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What is the equation of state of high-density nuclear matter?
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Figure 1: MUSES collaboration 2303.17021
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What is the equation of state of high-density nuclear matter?
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Figure 2: MUSES collaboration 2303.17021

= Neutron stars: densest objects in the universe

p~ 1014715g/cm3 2 Nsat



Neutron star (NS) equation of state (EOS)

= Model neutron star with relativistic, perfect fluid stress-energy tensor

Wi = (D5 (2) 02ty =F (2o

= What is the equation of state p (p)?



Mass vs. radius

26
— AR o
---- HLPS soft '\\
2.4f —— HLPS int. \
—— HLPS stiff 3
— 1
S22
i
= i
E \.!
220 i
1
i
i
1.8 i
i
i
L [ RS S ENS T RS R ¥ R 1
Radius (km)
Figure 3: Riley+ 2105.06980
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= M (and/or R) = constraint on p(p)



Tidal deformability

Qj ~ —N\E;

- N(p, p) (Flanagan—+Hinderer 2007, Hinderer 2007, Damour+Nagar 2009,
Binnington+Poisson 2009)

igure 4: Chatziioannou 2006.03168



Tidal deformability
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Figure 5: LIGO/Virgo 1710.05832

= GW phase = constraint on A = constraint on p(p)



Out-of-equilibrium physics of neutron stars 1

= Viscous (higher derivative) corrections

T/,I,l/: (p+P—|—) UHUV-‘rPg;w—-‘r"'-

= (: Urca processes n — p+ e~ + e, p— €~ — n+ ve (Haensel 2002,
Alford+ 2018, Most+ 2021)
= 7: NS crust dynamics (e.g. Kochaneck 1992)

= What is ¢ (p) and 7 (p)?



Out-of-equilibrium physics of neutron stars 2

= Merger: out-of-equilibrium properties of the star could be measurable
with GWs as remnant star relaxes to equilibrium (Alford+ 2018,
Most+ 2021, 2022, Rezzolla+ 2023).
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Out-of-equilibrium physics of neutron stars 3

Binary neutron star signal
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Figure 7: Lattimer, Annu. Rev. Nucl. Part. Sci. 2021. 71:433-64

= The merger/postmerger is messy
= Constrain out-of-equilibrium effects during the inspiral?

10



Previous work

= Dynamical tides (modal excitation): important tidal resonance/very
rapid rotation (Lai 1994, Ho+Lai 1999, Lai+Wu 2006,
Flanagan-+Racine 2007, Hinderer+ 2016, ...)

= May also be important not during resonance (Pratten+ 2022)

= Viscous effects and tidal locking (Bildsten+Cutler 1992)

= Viscous effects and change in NS shape (Kochaneck 1992)

= Dissipation: 4PN order in the GW phase (Poisson+Sasaki 1994,
Tagoshi+ 1997, Alvi 2001)

= Specific PN contribution of bulk viscosity during inspiral not
measurable (Most+ 2021)
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Main conclusions

Qj ~ —NEj — Z0,E;.

= Dissipative tidal deformability =: correction to GW phase from
dissipative (e.g. viscous) processes

= Potentially similar contribution to GW phase as A if 74 2 20us

= Dissipative/viscous effects enter the GW phase at 4 Post-Newtonian
(PN) relative order, with a large finite-size correction

h(f) =A(f) eV,

V= (F) = — ﬁ%é « (wMF) log (x MF) .

= Physically allowed values of viscosity may be measurable with
ground-based GW detectors
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Overview of rest of talk

&> ®N

Computing the GW phase

Tidal response of a relativistic star

Post-Newtonian (PN) expansion of neutron star binaries
Detectability

Calculating = for (non)relativistic stars
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Computing the GW phase

= GW strain h
h(f)=A(f) eV

= Differential equation for phase in terms of total binding energy E;o: of
a binary (Tichy+ 2000)

d2w 2w dEtOt

df2  E,,, df

= Compute E;o, Etot for a Newtonian binary, including keeping
dissipative tidal response
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Tidal response of a star
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Tidal response of a star

= Assume slowly changing tidal field

BB i iBpy LE o B
dr fluv, dT2 f dr )

= Assume linear quadrupolar reponse

(1) dERY

d2 Erv
wY — _ A EMY | ) (2)
Q 2 2T o

—Aem; dr?
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Leading order, Newtonian response

Interpret 72(1) as tidal lag time (Darwin 1879)

dE"
Q™ —xoE (t = 1)) m DR — dorfD =

dr
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Tidal deformabilities 1

= Stellar compactness

= Tidal deformability (Flanagan+Hinderer 2007)

0
Yow _ 2ka

Aa = = - =
AT s 3 CE

= Dissipative tidal deformability
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Tidal deformabilities 2

= Tidal lag 74 the new physical parameter to compute/constrain

0) (1)
= _ _2aTA 2k
mg 3 Cg tr '

= Many different physical processes can contribute to 74
= Molecular viscosity of the star
= Turbulent effective viscosity (Zahn 1966)
= Dynamics of the stars crust (Kochanek 1992)
= Out-of-equilibrium Urca processes (Haensel 2002, Alford+ 2018,
Most+ 2021)
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Tidal deformabilities 3

Tidal response in frequency space

Quv (W) = F2 (W) B (w) = (AN (w) + =(w)) Epw (w) -

Dynamical tide A (w)
= Conservative: A (—w) = A (w)
= Captures excitation of normal modes of the star
= Dissipative tidal deformability =
= Higher order expansion = (w) is odd: =(—w) = —=(w)
= Damped simple harmonic oscillator (c.f. Sridhar+Tremaine 1992)

A
2 2 _
w? —wj — iyw

A w\? Yw
= =) i+ | E, )
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Q,u,u (w) - E/Ll/ ((.U)
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Newtonian dynamics of a binary 1

| ~ v
ma
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= Newtonian equations of motion

<Jk> <Jk>

2 ma mg

= Newtonian tidal response

. _ dE]
QJ:mE\</\AE — Mma= Adt>.
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Newtonian dynamics of a binary 2

Change in orbital energy

dE,,
dtb - -Fdiss~
where
1 ;Mo 3uM 4 a
Eorb :EMVIV - T - 5,6 (mBmA/\A + mAmB/\B) 9
9uM _ _ . i
Foies = — = (mem3=a + mam3=g) (2F% + viv') .

r8
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Gravitational wave phase

= Phasing formula

dz\lf - 2i dEtot

df?  E,, df ’
= Energy
dE
Eior = Eorb7 d:_Ot = Fdiss + Fow-

= Integrate twice, obtain 4PN dissipative correction

31 [ 75 39 4, _ n
v (f) = 1287]u 1 2o log(u) 2/\u +27rfte — ¢ 2
u= (MFY3,
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Effacement principle

Qj = —AEj — Z0,E;.

= Effacement principle: finite size of star affects equations of motion
at 5PN order (Damour 1987).
= Dissipative finite size of star effects enter equations of motion at
6.5PN order
= Q: How do dissipative, finite size effects enter at 4PN in the GW
phase?
= A: Dissipation affects Ejo through Fyiss

dzw 277TdEtOt

df? ~ E,, df
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= No initial spin
= Negligible tidal spinup of stars
= This approximation breaks down (stars become tidally locked) for
white dwarfs (Burkart+ 2013)
= Ignore heating/finite temperature effects
= Orbital frequency far away from any stellar resonances
= Could break down in the presence of low-frequency, highly stratified
(g-) modes
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Self-consistency of Newtonian calculation: no-spin calculation

= Tidal torquing spins-up stars

dQa  45GmEmS _
gt = 2REMoe =408 (WA= Q).
A

= [Inspiral driven by gravitational radiation reaction

dr ~ _647}6374
dt GMm 'O

= v > average causal bound in order for appreciable spinup of stars
(tidal locking) before merger (Bildsten+Cutler 1992)

Tiock o4 ( M  ma \° (1.6My)\ [ 12km 5(%)
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26



Measurability of the tidal dissipation
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Fisher analysis for a quasi-circular binary 1

h(f) = Af7/0eV(),

fuPPer ’ 7-' (f) }
p /f\/ower 5'7 (f)

. V=W, W+ s
= W,,: point particle, 4 PN (Blanchet+ 2023)

Wp: tidal Love, 5 PN (Flanagan+Hinderer 2008)

= W= dissipative, 4 PN (JLR+ 2023)

GW170817-like parameters for O5 with SNR = 100.
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er analysis for a quasi-circular bin
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Mapping to microphysics

= Connect tidal delay to effective viscosity

_ p2,avARA
ma '

Td,A
= va = (n) /p: effective average kinematic viscosity (could include bulk
viscosity)
= po a1 dimensionless coefficient to compute
= Many different physical processes could contribute to v
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Calculating the tidal response: black holes

Quv (W) = F (w) Epw (w),

= Tidal response of black holes (Poisson 2009)

M
F> (w) ~ 1075 (2OI\/I@> iw+ O (w?).
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Calculating the tidal response: relativistic stars

= Newtonian stars: = computed for special cases
= Work in progress: general perturbative calculation
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Calculating the tidal response: Newtonian stars 1

= Frequency space response
Qyj (w) = Fa (W) Ej (w) -
= Fp (w): large number of calculations for main-sequence stars

(e.g. Ogilvie 2014)
= Turbulent dissipation main contributor to v (Zahn 1976)
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Calculating the tidal response: Newtonian stars 2

Response is complicated for main-sequence stars (Ogilvie 2014)

tidal period/days
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Calculating the tidal response: Newtonian stars 3

= Tidal response of white dwarfs (Campbell 1984, Willems+ 2010)
= Tidal response of neutron stars (Lai 1994)
= Reuvisit, consider simple case (polytropic star)
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How important could bulk viscosity be? Reuvisiting the Newto-

nian case

Navier-Stokes equations
Dp + pf =0,
pDV + V'p — V. (C0g™ + 2n0%) = pViU + pVIV,
ViV'U+4rGp=0.
= (: Bulk viscosity, #: fluid expansion

= 7): Shear viscosity, oj;: fluid shear
= V. External tidal field
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Formal solution to Newtonian problem 1

= Linearly perturb Navier-Stokes equations, expand in modes
= Adiabatic, Lagrangian perturbation dv/ = 8, — —iwé’
= Perturbed Navier-Stokes equations

i&f i&f 2851 i
L 488l — 2E =1,

= Sj’:: self-adjoint perfect-fluid differential operator (Chandrasekhar
1961)

= 0L} viscous perturbation

= f': tidal forcing
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Formal solution to Newtonian problem 2

Qjj (w) = F2 (w) Ejj (w) -

] 621’: = 0: assume mode solutions complete
= f, p, g modes
= Set 4£} # 0, compute perturbation to w

F>
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Formal solution to Newtonian problem: detectability
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Why is bulk viscosity less important? (Newtonian case)
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= Dominant contribution to gravitational coupling (f-mode) induces
very little compression in the star

= Future work: determine if there is more compression for relativistic
stars
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Relativistic calculation

= No complete set of modes
= Spacetime is dynamical

g/w — g(/g)/ + 5g‘“’7

| Compact object

BTl

1 F(w) »

! Point mass + Multipole moments

Worldline

Figure 9: Creci, Hinderer, Steinhoff, 2108.03385
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(Weak) constraints on out-of-equilibrium physics
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Conclusion

= Dissipative effects in neutrons star may be measurable during the
inspiral of a binary

= Tidal deformability A + dissipative tidal deformability =: two
numbers to probe neutron star microphysics

= Complements constraints that could come from merger/post merger
= More details: 2306.15633

= Bulk viscosity more difficult to constrain than shear viscosity

= Future work

= Compute viscous contribution to =

= Compute leading PN corrections to phase
= Relax assumptions: add initial NS spin

= Obtain constraint on = from GW170817
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Backup slides




Modes of a star
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Figure 1: Christensen-Dalsgaard, Lecture notes on stellar oscillations, 1998



Bulk viscosity function of density
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Adiabatic Love numbers

1. Spherically symmetric star (TOV equations)

81 G
0 L 0 _ 0
gp(w)7 5”%0)7 P(0)y -+ — G;(u/) - 77_/(53
2. Adiabatic (time independent) linear perturbation (Hinderer 2008,
Damour+Nagar 2009, Binnington+Poisson 2009)

81 G

6g'“’”’ 6[]”7 5107 cco = 6G/1,l/ = 757-,uy.

3. Extract quadrupole from g+ (Thorne 1998, Hinderer 2008)



No viscous corrections to stress-energy tensor

1. Perturbed stress energy reduces to perfect fluid.
e
O Uy =6 (;uuuu + pAW) .

2. There are no viscous corrections to the adiabatic tidal Love numbers.
3. Can extend argument to other fluid models.



Relativistic, viscous fluids

Relativistic, causal, hyperbolic theory of viscous fluids: BDNK fluid
(Kovtun 2019, Bemfica+ 2020)

Ty =€upuy, + PA L, +]2Qu ) | — | 2o |,
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More facts about the BDNK fluid model

= BDNK fluid (Kovtun 2019, Bemfica+ 2020) is the only relativistic
fluid model that

Is causal and strongly hyperbolic.

Has stable equilibrium states.

Includes bulk viscosity, shear viscosity, and heat conduction.

Includes nonzero baryon number.

@ E

Entropy increases with time.



More facts about the BDNK fluid model

1. Fluid current

JH =put.

2. Set 7. =0, 7, =0, 79 =0, and the theory reduces to an Eckart
fluid (Eckart 1940).

3. Requiring that the theory by hyperbolic in the relativistic regime, and
reduce to the Navier-Stokes equations of motion at OPN constrains
the heat conductivity and shear viscosity to satisfy k > nkg/my
(Hegade+ 2023).



