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Quasi-circular Plunge Ringdown
inspiral and merger
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Black hole
Post-Newtonian Numerical perturbation
techniques relativity methods

How well does linear perturbation theory describe the geometry of
the deformed black hole formed after the merger of two black holes
(or another compact object with a black hole)?

2Image: Baumgarte and Shapiro, Numerical Relativity: Solving Einstein's
Equations on the Computer



Black hole ringdown: higher order effects?

» Ringdown modeled as sum of quasinormal modes

h(t) =R Apjme “rimt.

n,l,m

» Modes determined solely by final black hole spin and mass

» Need to measure higher modes for no hair tests, e.g.
Wn,I,m = W0,2,2,W0,4 4

» Does linear perturbation theory model excitation of higher

order modes, or does nonlinear mode coupling significantly
contribute to amplitude of higher order modes?
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Gravitational perturbation theory: the formalism we use



Gravitational perturbation theory

G [g] =0.
Expand around background spacetime (e < 1)
g =5 +egly) + gy + -
Gur =69 [¢V] + ¢ (61 [6@] + 6 [¢@]) + -

Order by order
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Newman-Penrose formalism: curvature perturbation

Complex, null tetrad
e Wy (i (Tl
Metric—tetrad
8w = 2luny) = 2m(, )
Derivatives— directional derivatives
D=1I"V,, A=ntv,, d=mtv,

Christoffel symbols—Ricci rotation coefficients; e.g.

oc=m'm’'V,l,
Curvature tensors— Curvature scalars; e.g.

VY, = Cuyaﬁn“ﬁfl”naﬁvﬁ



Newman-Penrose formalism: curvature perturbation

Newman-Penrose scalar (Cy,qap Weyl tensor):

Y, = Cwaﬂn“ﬁv”naﬁvﬁ.

vy =o,
Wy =W L p® 4 2u@ 4 0 (S).
Order by order solve the Teukolsky equation
Tow =0
T oW =5 [gﬁ)}



1. Linear gravitational perturbation
Tu) =o.

2. Metric reconstruction

vl g,

3. Second order gravitational perturbation

TowP = s {g}})] :

4. Relate \Uil) and \Uf) to gravitational wave radiation at future
null infinity



Equations of motion for the linear curvature perturbation:

Teukolsky equation®

PERTURBATIONS OF A ROTATING BLACK HOLE. I. FUNDAMENTAL
EQUATIONS FOR GRAVITATIONAL, ELECTROMAGNETIC,
AND NEUTRINO-FIELD PERTURBATIONS*

SAUL A. TEUKOLSKY}
California Institute of Technology, Pasadena
Received 1973 April 12

field’ (s -+ 1 derived in § III), ora gravnatlonal peIEll?gatlon (s S = 1 +2 derived in
§1):
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Here s is a parameter called the “spin weight” of the field. Table 1 specnﬁes the field
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Schematically:

T = 0.

3Teukolsky, ApJ Vol. 185, pp 635-648 (1973)



Equation of motion for second order perturbation

Equation of motion* for \Uf):

T =3 [g,ﬁﬂ :

)

We need to reconstruct g,(j,) from lllfll .

“Campanelli and Lousto, Phys.Rev.D 59 (1999) 124022



Direct metric reconstruction

We can use Bianchi and Ricci iden-
tities to obtain transport equations
for metric components®

The Matilematjcal
Theory of Black Holes

S. Chandrasekhar

5Chandrasekhar, 1992; Andersson, Bickdahl, Blue, Ma, 1903.03859



Direct metric reconstruction

Example equation
0=—(A+p+7) A —wi)

This is a transport equation for A1), as

AMR R?2

Need to specify Cauchy data for A(1)



Direct metric reconstruction

(1)

Pmm = g m*m”, etc.



Relating curvature perturbation to metric perturbation at

future null infinity

lim \U( ) = —a,_?gi) —i—l@tgi).

r—o0

In an asymptotically flat gauge, for outgoing waves at future
null infinity, we have®

lim \Il(2) — 025gJ(r) + 1825g(2)

r—o0o

We use outgoing radiation gauge (asymptotically flat), and our
initial data sets no ingoing radiation at future null infinity

®Campanelli and Lousto, Phys.Rev.D 59 (1999) 124022



Numerical implementation



1.

Linear gravitational perturbation: solve the Teukolsky
equation

Tou{ = 0.

Metric reconstruction: direct reconstruction by solving a
nested set of linear transport equations

wi) = gll).

Second order gravitational perturbation: solve the Teukolsky
equation

T =3 [g,ﬁly)] :

Relate \Ugl) and \ng) to gravitational wave radiation at future

null infinity: read off values of W, at future null infinity



Numerical setup: 1 + 2 dimensional evolution

Kerr spacetime: axially symmetric:

F(T,R,0,¢)=> fI™(T, R,0)e™.

Solve in the time domain



Form of mode mixing

Second order:

Touf) 5 [af] " = (940" wioag)
Nonlinear mode mixing:

\Ugl)[i2]e2i¢ s {\Uf)[ﬂ] it wg2)[0] eo/'qs} (1)
More generally

{j:ml,j:mz} — {j:2m1,:|:2m2,j:(m1 + mg)} (2)



Coordinates and initial data

Pseudospectral code that solves the Teukolsky equation in horizon
penetrating, hyperboloidally compactified coordinates

Teukolsky equation
T=0  evolution in 1

Région of support
of initial data for
the first order ¥,



Results
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Decay of source vs. decay of curvature

» The second order curvature perturbation does not decay as
2
\Uf) x (lllgl)) at late times
2
» Instead, S (\Ilgl)>

» Homogeneous vs. particular solution
T—2\UELZ) =8 |:g,lg,:ll/):|

» In the ordinary perturbation theory approach we use, at late
times second and first order perturbation decay roughly at the
same rate: quasinormal mode of w,, (black hole spin
a=0.7):

szz/M ~0.5 — 0.08/
w044/l\/l ~1.1 —0.08/



Fourier transform of signal

J*, a=07, m=2 J*, a=07, m=2

» Left: Fourier transform at early times
» Right: Fourier transform at late times

» Late times: dynamics determined by slowest decaying
quasinormal mode
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Convergence of metric reconstruction in code

Convergence of independent residuals: two Bianchi identities, and
testing hy is a real variable



Future directions/work in progress



Future directions

» Explore nonlinear black hole physics; e.g. “turbulent”
gravitational wave interactions

> Map out energy cascade between modes
» Astrophysically realistic initial data

» Metric reconstruction with matter fields (application: self
force)



Energy cascade of modes and “turbulent” gravitational wave

interactions

» Consider near extremal Kerr black holes: a — M.

» In near extremal limit there is a family of “zero-damped
modes"’, whose decay timescale goes as
T/M~(1—a/M)'/?

» At extremal limit have terms that do not decay at all on the
horizon: Aretakis instability®

» Zero-damped modes decay most slowly near the black hole
horizon: gradients may grow

» Growing gradients: nonlinear effects may be important

» Heuristic arguments: nonlinear gravitational wave interactions
may have properties similar to homogeneous two-dimensional
fluid turbulence®

“e.g. Hod Phys.Rev.D 78 (2008); Yang et. al., Phys.Rev.D 88 (2013)
8Adv.Theor.Math.Phys. 19 (2015) 507-530
®Yang et. al., Phys.Rev.Lett, 114 (2015)



Energy cascade of modes and “turbulent” gravitational wave

interactions

» Challenge: how to measure “turbulent” gravitational wave
interactions in a gauge and coordinate invariant way

» Challenge: relate Weyl scalar W4 to some fluid variable to
make connection to Turbulence

» Consider: spectrum of energy flux radiated through future null
infinity

dE r? 2

— = lim — Q ov
du oo 4 Szd ‘/_Oodu N




Energy cascade of modes and “turbulent” gravitational wave

interactions

» Challenge: how to measure “turbulent” gravitational wave
interactions using ordinary perturbation theory

» Turbulence signaled by secular growth in perturbation theory

W = (o + Tops +--)

» What is the best way to resum secular growth(dynamical
renormalization group, etc), to obtain late time dynamical
behavior for near-extremal black holes?



Astrophysically realistic initial data

Ringdown modeled as sum of quasinormal modes

h(t) __ Z An,l,meiiwnlmt-

Teukolsky equation
T=0  evolution in «

Region of support
of initial data for
the first order ¥,



Metric reconstruction with matter fields: self-forcel®

Self force problem:

1
R;w - Eg,uI/R - T/,LI/

where T, is the stress-energy tensor of a point particle

1% g. Barack and Pound, Rept. Prog. Phys. 82 (2019)



Metric reconstruction with matter fields: self-force

Expand
Suv :gﬁ?j) 4 Eg;(ul/) + 62g/5,2/) dooa
Tw=+eTD+ETE + ...
Gy =G0 {gu)} e (G,SIJ [g(l)} + @9 [g@)]) T
Order by order:

9% {gu)} —T,

6 [62] =7 — 69 [¢)]

v nv ny



Metric reconstruction with matter fields: self-force

» Order by order in NP formalism

T_ow{ =7,
T WP =7P 1 s,

» Technical challenge: metric reconstruction ng) — g,gly) with a
source term

» \We use outgoing radiation gauge, which one cannot use when
there are source terms in the linear equations of motion

» Potential go-around: Green, Hollands, Zimmerman, Class.

Quant. Grav. 37, (2020), or work instead in an outgoing
Bondi gauge



11

Conclusion

» How well does linear perturbation theory describe the ringdown
of a Kerr black hole?

» Computation of second order curvature perturbation of a Kerr
black hole: W{?

» Direct metric reconstruction of metric from linear curvature
perturbation: \Ugl) — gfbly)
» Future directions

» Astrophysically realistic initial data

» Direct metric reconstruction with matter fields

» Examine late time nonlinear behavior of nearly-extremal Kerr
black holes: do gravitational waves undergo turbulent energy
cascades?

11 3rXiv:2008.11770,arXiv:2010.00162



Recent work related to nonlinear perturbations of Kerr

» Using Hertz potentials:

» Green, Hollands Zimmerman, Class. Quant. Grav. 37 (2020)
075001, arXiv:1908.09095

» Using “Kerrness’ measure with nonlinear simulations:

» Bhagwat et. al. Phys. Rev. D97 (2018) 10, 104065,
arXiv:1711.00926
» Okounkova, arXiv:2004.00671
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