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Abstract

These notes contain brief reviews of a fairly random assortment of topics in probability and
(Bayesian) statistics. The only thing that unifies these notes is that at some point I wanted
to better understand something (either for work or out of interest), and I have found I often
retain information more effectively if I write it down somewhere. These notes are not self
contained, may contain factual errors, and remain a work in progress. Please let
me know if you find any errors, or if you find any part of these notes to be unclear!

For a good overview of basic (mostly frequentist) statistics, I recommend [Was10]. I try to
cite sources whenever possible (whenever I can remember the source I learned something
from), although the purpose of these notes are to serve more as a statistics “cheat sheet”
than a formal review.

The notation is: vectors/tensors are in boldfont. Indices are denoted with lower case latin
letters, e.g. the ith component of the vector v is (v)i = vi. We typically do not use boldfont
when we explicitely write down indices. Repeated indices are summed over. Capital P always
represents a probability distribution, x always represents an instantiation of measured data,
θ always represents model parameters. More generally, model parameters are represented
by greek letters, while data is represented by latin letters. Random variables are always
capatalized. Partial derivatives are denoted by ∂, and covariant derivatives by ∇i (for our
purposes, you can usually replace covariant derivatives with partial derivatives).

I thank Rohit Chandramouli for helpful conversations, and a lecture on model selection that
inspired the creation of these notes. I thank Simone Mezzasoma for helpful comments that
have led to a clearer presentation.

Copyright 2024 Justin Ripley. You may copy and distribute this document provided that
you make no changes to it.



Chapter 1

Overview of parametric Bayesian
statistics

1.1 Definitions

We use lower case latin latters to index vector/tensor components. We use a lower case
latin letter in parenthesis to index a particular vector/tensor. We also bold font vectors.
Repeated indices are summed (Einstein summation notation). We denote models with capital
Latin letters, model parameters with lower case greek letters, and data with lower case latin
letters. Notice that we use latin indices to index both model parameters and data with
lower case latin indices, even though in general model parameters and data will live in
different dimensional vector spaces. We will drop the instantiation index (the latin index in
parenthesis) unless otherwise needed.

Here we focus on parametric Bayesian statistics. By parametric, we mean that we have
explicit functional models for the probability distributions of parameters, and by Bayesian,
we mean we mean that we are interested in the probability distribution of those parameters
(and/or models), given the observed data.

Bayes theorem gives us

P (θ|x,M) =
P (x|θ,M)P (θ,M)

P (x,M)
, (1.1)

Here P (x|θ,M) is a statistical model M that reflects our beliefs about the data x given
the values of the parameters θ of a model M . The posterior P (θ|x,M) is a probability
distribution for the model parameters θ given x. The likelihood function is P (x|θ,M),
and is denoted by L (θ,M). The prior distribution P (θ,M) quantifies our certainty of
the model parameters θ before we see the current data, and is often denote by π (θ,M).
The evidence [Ski06] (or marginal distribution of x [Was10]) P (x,M) essentially acts as
a normalizing constant, as P (θ|x,M) must sum (integrate) to one. The evidence is often
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denoted by Z (x,M). If there are N independent observations of the data x, the likelihood
is

L (θ,M) =
N∏
n=1

P
(
x(n)|θ,M

)
. (1.2)

We can write the evidence as the integral (or sum) over the model parameter values

Z (x,M) =

∫
dθL (θ,M) π (θ) . (1.3)

Much of applied Bayesian statistics centers around finding efficients ways to evaluate the
likelihood and evidence, given an assumed model P (x|θ,M) and prior P (θ,M).

1.2 Parameter estimation

Assume you have one fixed model M . You can find the distribution of the parameters for
the model, given a set of observed data, using Bayes theorem. Rewriting (7.1), we have

P (θ|x,M) =
L (θ,M) π (θ)

Z (x,M)
. (1.4)

The posterior probability distribution P (θ|x,M) for most problems is complicated and
cannot be written in closed form. Determing the posterior can usually only be accomplished
numerically. Additionally it can be computationally expensize to compute the posterior
distribution, especially if there are many parameters in the model (θ has many components).

This being said, it is straightforward to compute the relative probability of two different
values of parameters θ(n) and θ(m). We have

P
(
θ(n)|x,M

)
P
(
θ(m)|x,M

) =
L
(
θ(n),M

)
L
(
θ(m),M

) π (θ(n),M
)

π
(
θ(m),M

) . (1.5)

We can write this in terms of the likelihood ratio

λ
(
θ(n),θ(m)

)
≡
L
(
θ(n),M

)
L
(
θ(m),M

) , (1.6)

and the prior odds

R
(
θ(n),θ(m)

)
≡
π
(
θ(n),M

)
π
(
θ(m),M

) . (1.7)

We discuss computational methods later, but we note that the value of θ that maximizes
L (θ) is the maximum likelihood estimator (MLE), and the value of θ that maximizes
L (θ) π (θ) is the maximum a posteriori probability estimator (MAP). Note that the
MLE and MAP do not gives us any knowledge of the variance of those parameters–that
requires knowledge of the full posterior probability distribution.
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1.3 Model selection/Hypothesis testing

Second, you could have a collection of models M(1), ...,M(N). Given a set of observations,
you may be interested in the relative ability of each model to explain the data. Using Bayes’
theorem, we have

P
(
M(n)|x

)
=
P
(
x|M(n)

)
P
(
M(n)

)
P (x)

. (1.8)

This means that

P
(
M(n)|x

)
P
(
M(m)|x

) =
P
(
x|M(n)

)
P
(
x|M(m)

) P (M(n)

)
P
(
M(m)

) . (1.9)

Notice that we have essentially marginalized over the parameters of the models. That is, we
have

P
(
x|M(n)

)
=

∫
dθP

(
x|θ,M(n)

)
P (θ) = Z

(
x,M(n)

)
. (1.10)

We see that the odds ratio for two models is given by the ratio of the evidence for each model
multiplied bythe prior odds for each model.

P
(
M(n)|x

)
P
(
M(m)|x

) =
Z
(
x,M(n)

)
Z
(
x,M(m)

) P (M(n)

)
P
(
M(m)

) . (1.11)

The odds ratio of the evidence is called the Bayes factor

B
(
M(n),M(m)

)
≡
Z
(
x,M(n)

)
Z
(
x,M(m)

) . (1.12)

1.4 Choice of prior

Many people hold strong opinions about what a “good” choice of prior distribution for
parameters should be, that often depends on the model in question and the field one is
working in. Here we just review some of the terminology used in discussions on picking
priors. Ultimately, there are at least as many (more serious) assumptions wrapped up in
choosing a model to fit in parametric Bayesian statistics as there are in choosing a prior, so
we just review the terminology used in picking priors here.

If the posterior probability distribution lies within the same probability distribution family
(for a review of some different families, see Appendix B) as does the prior, then the poste-
rior and prior are said to be conjugate, and the prior is a conjugate prior. Clearly the
likelihood–that is the choice of model we are trying to fit for–plays a deciding role in deter-
mining if the prior is conjugate to the posterior. The notion of conjugate priors is mostly
useful for analytic calculations, if we want to have a closed-form expression for the posterior.
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So-called uninformative priors are meant to be used when you do not know much about
the values the parameters you are trying to model. Ultimately though For example, the
uniform distribution is often used as an uninformative prior, although even with a uniform
you must choose bounds for it in order for the distribution to be normalizable (see Appendix
B). Moreover, most distributions are not invariant under coordinate transformations. (see
Appendix A). Consider an injective change of variables ψ (θ). The PDF for ψ transforms
as (see (A.14))

P (ψ) =
1

|det (Jij)|
P (θ) , (1.13)

where Jij = ∂ψi/∂θj is the Jacobian matrix. The Jeffrey’s prior is a distribution that is
proportional to the determinant Fisher information matrix

P (θ) ∝
√

det (Fij (θ)). (1.14)

(see Appendix A), and does not change under the change of variables formula. This essen-
tially follows from the fact that Fij is a tensor, so that√

det (Fij (ψ)) =
√

det (JikJklFkl (θ))

= |det (Jij)|
√

det (Fij (θ)). (1.15)

We see that the determinants of the Jacobian cancel each other out. While elegant, it is
much more common (at least in the physics/astronomy literature) to nevertheless see the
uniform prior being used when the authors profess ignorance about the expected value of
the parameter in question.

In the limit of a large amount of data, so long as the prior does not exclude the best fit
parameters to the model, different choices of prior should not dramatically affect the final
estimated values for the paramters (the Bernstein-von Mises theorem is one concrete special
case of this statement, see Appendix A).
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Chapter 2

Model comparison

2.1 Bayes factor

To briefly review, in parameter estimation, one fintds the best fit parameters from the
data given a model h (θ). What “best fit” means depends on the test statistic being used.
Here we are concerend Model selection, which concerns finding which model better fits
the data. In order to find the better fitting model, we compute the Bayes factor, which is
the ratio of the evidence for each model

B2,1 ≡
P (d|H2)

P (d|H1)
. (2.1)

As a basic rule of thumb, if B2,1 ∼ 1, then neither hypothesis is preferred compared to the
other. If B2,1 � 1, then model 1 is preferred, while if B2,1 � 1, then model 2 is preferred.
There are several subtleties to this interpretation, which we discuss more below.

If a model H has parameters θ, we can compute the likelihood by marginalizing over the
models parameters for the likelihood (c.f. (1.3))

P (d|H) =

∫
dθP (d|θ, H)P (θ, H) . (2.2)

Doing this integral is typically challenging, since the dimension of the parameter space is
very large, and the likelihood P (d|θ, H) can be complicated (its functional form can only be
guessed at in general). There are various approximations for how to compute this integral
(analytically and numerically).
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2.2 Nested models and the Savage-Dickey ratio

We consider a method to compute the Bayes factor for nested models. Consider a model M1

which is nested in a model M2. The model M2 has one more parameter than M1 (generalizing
to more parameters is straightforward). We call the extra parameter λ. We call the rest of
the parameters θ nuisance parameters, as they do not distinguish the two models. In this
setup we have that

P (d|θ,M1) = P (d|θ, λ = λ0,M2) , (2.3)

where λ0 is a constant.

The evidence of M1 is

P (d|M1) =P (d|λ = λ0,M2)

=
P (λ = λ0|d,M2)P (d|M2)

P (λ = λ0|M2)
. (2.4)

We then see that the Bayes factor is

B2,1 =
P (d|H2)

P (d|H1)

=
P (λ = λ0|M2)

P (λ = λ0|d,M2)
. (2.5)

This is the Savage-Dickey ratio [DL70]. We can also write this as

B2,1 =

(
prior

posterior

)
λ=λ0

. (2.6)

The advantage of this method is that you only need to compute the evidence of the model
M2, instead of computing the evidence of both M2 and the nested model M1. Also, you do
not need to divide two noisy numbers (the evidence of model 1 and model 2), you only need
to divide a known number (the prior) by one noisy number (the evidence of model 2).

2.3 Occam factor

For more discussion see for examle [Mac03]. We consider another measure of the power of a
model to explain a given data set. The Occam factor is defined to be

O ≡posterior volume

prior volume
∼
σθ|d
σθ

. (2.7)

By volume, we mean the integral over parameter space of the probability distribution. Here
σθ is some measure of the variance of the prior probability distribution, and σθ|d is variance
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of the posterior probability distribution. The Occam factor measures how much the data
shrinks the probability distribution as compared to its prior distribution. If the Occam factor
is ∼ 1, the data doesn’t constrain the model well, since the variance parameters of the model
do not shrink. We can interpret this as saying that the model does not explain the observed
data well either. We can write

evidence ∼ max likelihood× occam factor. (2.8)

From this, we see that the Occam factor accounts for the fact that models with more pa-
rameters can fit data better, and should be penalized for having more parameters.

For example, consider two hypothesis: H1 and H2. Say they are nested: H2 (θ) ∼ H1 (θ, λ).
If λ is unconstrained, O ∼ 1, and if λ is well-constrained, O � 1.
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Chapter 3

Forecasting

When it is hard or expensive to collect data, it can be useful to predict (or forecast) how
well parameters of a given model could be measured with simulated data. Forecasting can
inform whether a a more in-depth analysis of a model on real data is worth doing–that is
whether or not real data could place any meaningful measurement of the parameters of a
model. Here we review several semi-analytic methods for forecasting.

3.1 Injection analysis

We consider a model P (x|θ) with prior P (θ). For whatever reason, we do not have any
data x. For example, it may be expensive to collect data, so we do not want to collect it
until we have some confidence that we could meaningfully measure parameters in the model
P (x|θ). An injection analysis involves determining the distribution of P (θi|x0) where x0

is fake (generated) data set that we hope represents a characteristic realization of the data
we may measure. In other words, we have “injected” the data x0 into our model. If we can
meaningfully measure/determine the parameters θ given x0, it may be worth collecting real
data/observations.

A reasonable choice for x0 is to choose x0 to maximize P (x|θ0), where θ0 are the values of
parameters that you expect to hope to measure. In equations we choose x0 to satisfy

∀x P (x|θ0) ≤ P (x0|θ0) (3.1)

Sometimes it is worth adding a realization of noise, n, to x0; we call this

x0,n = x0 + n (3.2)

For example, the components of n may be drawn from a Gaussian with zero mean and unit
diagonal covariance matrix (although the choice of n will depend on your understanding
nature of the experiment/observation). It is common to n = 0, which can be considered the

9



“best” possible situation for recovering parameters. We then inject x0,n into the likelihood,
and sample on θ, that is we consider

P (θ|x0,n) =
P (x0,n|θ)P (θ)

P (x0,n)
. (3.3)

The probability distribution P (θ|x0,n) gives us an understanding of how well we could
measure θ0, given (near, if n 6= 0) optimal data. Moreover, it can give us an idea of how the
different components of θ may be correlated with one another.

To determine P (θ|x), we either need to directly sample θ from (3.3), or use an approximation
method.

3.2 Fisher forecasting

Injection analysis with a multivariate normal approximation for the likelihood is called
Fisher forecasting. Let θ̂ be the maximum likelihood estimator for θ. Under appro-

priate regularity conditions, in the limit of a large number of observations, P
(
x|θ̂
)

tends

towards the normal distribution (in parameter space), with mean θ̂ and covariance matrix

Σ
(F )
ij =

1

N
F−1
ij

(
θ̂
)
. (3.4)

Here N is the number of observations. This is known as the Bernstein–von Mises theo-
rem. We provide a proof of this result in Appendix A.

Estimating the maximum likelihood estimator θ̂ is a challenging task of its own, that we do
no explore further here. Using the Bernstein-von Mises theorem, the posterior probability
distribution near θ̂, in the limit of a large number of observations, is approximately

P (θ|x) =
π (θ)

Z (x,M)
exp

[
−1

2

(
θ − θ̂

)i
Fij

(
θ − θ̂

)j]
. (3.5)

If we assume a Gaussian prior on the parameters θ, then the posterior is a multivariate
Gaussian with an inverse covariance matrix given by

Σ−1
ij = NFij +

1

σ2
i

δij. (3.6)

That is, the posterior probability distribution within this approximation is

P (θ|x) ≈ 1√
(2π)k det Σ

exp

[
−1

2

(
θ − θ̂

)i
Σ−1
ij

(
θ − θ̂

)j]
, (3.7)

where k is the dimensionality of θ, that is the number of parameters.

10



To perform a Fisher forecast for a given model P (x|θ), we pick a set of parameters θ0,
and then compute the Fisher information matrix (A.33). That is, we assume that θ0 are the
“true” model parameters, and also are the maximum likelihood estimators. We then “inject”
those parameters into the likelihood, which we approximate as a multivariate Gaussian with
inverse covariance matrix given by (3.6). This analysis can be useful to determine the
strength of correlation between different the different components of θi (through the off-
diagonal terms in Σij). The diagonal of the covariance matrix additionally gives us the 1-σ
error bars of the parameters. If we could make N measurements of the same data, each
element in the covariance matrix would decrease 1/N , as follows from (3.4). We see that the
Fisher matrix can also give us a rough estimate of the number of observations N that are
needed to make a n− σ observation of a parameter θi.

Fisher forecasting is sometimes said to provide an optimal estimate of the variance of the
parameters in a given measurement. This statement is justified by the Cramér-Rao bound,
which states that the covariance matrix of an unbiased estimator for θ, Θ, (that is E [Θ (x)] =
θ) is bounded from below by the inverse of the Fisher information matrix

Σij

∣∣∣
θ=µθ

≥ F−1
ij (θ) . (3.8)

This bound should be interpreted with caution though, as (A.46) only holds for unbiased esti-
mators to the parameters θ. Consider a general estimator Θ (x), and denote its expectation
by

E [Θ (x)] = ψ (θ) . (3.9)

The Cramér-Rao bound states that

∇θmψi∇θnψjF
−1
mn (θ) . (3.10)

If Θ is an unbiased estimator (ψ = θ), then (A.45) reduces to (A.46). We outline a proof
of (A.45) in Appendix A.
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Chapter 4

Times series analysis

We consider the problem of determining the signal from a data timestream. Calling the data
x(t), we then want to find a signal s(t) given noise n(t), where

x (t) = s (t) + n (t) . (4.1)

We model the noise n(t) can be modeled as a stochastic process (which implies that x(t)
is a stochastic process) We assume x, s, n are all real functions. Our main goal is to derive
the likelihood function for a time series of the form (4.1) when n takes the form of colored
stationary noise, and to derive the matched filtering theorem.

4.1 Basic definitions

A function n(t) is a stochastic process, if n(t) is a random variable at each time t that
is described by some probability distribution. This probability distribution may depend on
t, and the previous history of values of x, for example. If t is a discrete variable, and the
probability distribution for n(ti) depends on n(ti−1), then n(ti) is a Markov chain. If the
probability distribution for n(t) is independent of t, then n(t) is a stationary process.

4.2 Correlation and covariance

We denote the mean and variance of a time series x(t) with µx and σx, respectively. We
define the covariance between two stochastic processes x1 and x2 at times t1 and t2 to be

Cx1,x2 (t1, t2) ≡ E
[(
x1 (t1)− µx1(t1)

) (
x∗2 (t2)− µ∗x2(t2)

)]
. (4.2)

We define the autocovariance for a stocahstic process to be

Kx (t1, t2) ≡ Cxx (t1, t2) . (4.3)
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We define the autocorrelation for a stochastic process to be

Rx (t1, t2) ≡ E [x (t1)x∗ (t2)] = Kx + µ2
x. (4.4)

We define the energy of a time series s to be

Ex ≡
∫ ∞
−∞

dt |x (t)|2 =

∫ ∞
−∞

df |x̃ (f)|2 . (4.5)

The last expression follows from Parseval’s theorem. We define the energy spectral den-
sity to be

Ŝx (f) ≡ |x̃ (f)|2 . (4.6)

4.3 Stationary and weak-sense stationary stochastic pro-

cesses

A stochastic process is said to be stationary if its joint probability distribution does not
change under time shifts. A stochastic process is said to be weak-sense stationary (WSS)
(or wide-sense stationary), then its first moment is independent of time, and if its auto-
correlation function depends only on τ = t1 − t2. For a WSS process we can write

Rx (τ) = E [x (t+ τ)x∗ (t)] , (4.7)

where t is arbitrary. For a WSS/stationary process, we can write the expectation of x at a
given instant as the average of x over all time

E [x] = lim
T→∞

1

T

∫ ∞
−∞

dtxT (t) , (4.8)

and similarly for functions of x(t). Here xT (t) is defined to be

xT (t) ≡wT (t)x (t) , (4.9)

wT (t) ≡

{
1 |t| < T/2

0 otherwise
. (4.10)

In other words, we can write

Rx (τ) = lim
T→∞

1

T

∫ ∞
−∞

dtxT (t+ τ)x∗T (t) . (4.11)

We emphasize that for WSS processes we can replace ensemble averages with time averages.
This is extremely useful in practice, as we can then determine the statistical properties of
WSS by taking repeated time measurements of observables of the time series. While it is
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common to assume a given time stream is WSS, most real world data is at best approximately
WSS, typically over a short time scale.

Stationary stochastic processes have support over the entire real line, so the energy integrals
defined above typically diverge. For these processes, instead one looks at the power

Px ≡ lim
T→∞

1

T

∫ ∞
−∞

dt |xT (t)|2

= lim
T→∞

1

T

∫ ∞
−∞

df |x̃T (f)|2

=

∫ ∞
−∞

dfSx (f) . (4.12)

One the last line we have used the power spectral density, which is defined to be

Sx (f) ≡ lim
T→∞

1

T
|x̃T (f)|2 . (4.13)

If x(t) is real, then x̃T (−f) = x̃∗T (f), and it is common to define the power spectral density
to be

Sx (f) ≡ lim
T→∞

2

T
|x̃T (f)|2 , (4.14)

and to write

Px =

∫ ∞
0

dfSx (f) . (4.15)

Finally, we consider the expectation value of the Fourier transform of a stationary signal

E [x̃ (f ′) x̃∗ (f)] =

∫ ∞
−∞

dt

∫ ∞
−∞

dt′e−2πi(ft−f ′t′)E [x (t)x (t′)]

=

∫ ∞
−∞

dte−2πi(f−f ′)t
∫ ∞
−∞

dτe−2πif ′τE [x (t+ τ)x (t)]

=

∫ ∞
−∞

dte−2πi(f−f ′)tR̃x (f)

=δ (f − f ′)Sx (f) . (4.16)

On the third line we used that x(t) was stationary.

4.4 Wiener-Khinchin theorem

The power spectral density and the Fourier transform of the autocorrelation are equal for
WSS processes. This is known as the Wiener–Khinchin theorem. To prove this, we set
τ ≡ t1 − t2. We then write

R̃x (f) =

∫ ∞
−∞

dτe−2πifτRx (τ)
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= lim
T→∞

1

T

∫ ∞
−∞

dτe−2πifτ

∫ ∞
−∞

dtxT (t+ τ)x∗T (t)

=

∫ ∞
−∞

df ′
∫ ∞
−∞

dτe2πi(f ′−f)τ lim
T→∞

1

T
|x̃T (f ′)|2

=Sx (f) . (4.17)

On the second line we used the formula for the autocorrelation function for WSS processes
(4.11). On the third line we used the convolution theorem for Fourier transforms. On the
last line we used that

∫
dτeiτf = δ(f), and used the definition of Sx(f) (4.13).

4.5 Gaussian white noise

As a special case of a stationary stochastic process, we first consider Gaussian white noise.
By Gaussian, we mean that the probability distribution for x (t) for each ti is a Gaussian

x (ti) ∼ N
(
µi, σ

2
i

)
. (4.18)

By white, we mean that the x (ti) are uncorrelated, and that the means µi = 0. The
autocorrelation function then is

Rx (ti, tj) = σ2δij. (4.19)

Notice that σ2 does not depend on ti. We see that white noise is stationary. The autocorre-
lation function can be written in terms of τ ≡ ti − tj as

Rx (τ) = σ2δ (τ) . (4.20)

By the Wiener-Kinchin theorem, we can compute the power spectral density from the Fourier
transform of the autocorrelation function

Sx (f) =

∫ ∞
−∞

dte2πiftRx (t)

=σ2. (4.21)

We see for Gaussian white noise, the power spectral density is a constant–there is constant
power across all frequencies. For real functions, the integral over frequencies goes from
[0,∞), and we define

Sx (f) = 2σ2. (4.22)

4.6 Likelihood function for a series of measurements

with colored stationary noise

Our treatment roughly follows [CA11] (see also [Fin92]). We consider a series of a continuous
time stream of observations y (t). We assume that y (t) can be related to a convolution of a
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time stream drawn from Gaussian white noise

y (t) =

∫ ∞
−∞

dt′γ (t− t′)x (t′) . (4.23)

Here γ is the kernel and x is a time stream drawn from a Gaussian distribution with constant.
We assume y, x, γ are all real functions. The Fourier transform gives us

ỹ (f) = γ̃ (f) x̃ (f) . (4.24)

The power spectral density of y then is

Sy (f) = |γ̃ (f)|2 Sx (f) = |γ̃ (f)|2 σ. (4.25)

The main point of adding the convolution is that we can consider processes with colored
noise, that noise where the power spectral density can vary with frequency. We can do this
by choosing some σ, and then choosing a γ such that |γ̃ (f) |2 gives us the spectral density
we desire.

We note that y (t) describes a WSS process, as

E [y (t1) y (t2)] =

∫ ∞
−∞

dt′1

∫ ∞
−∞

dt′2γ (t1 − t′1) γ (t2 − t′2)E [x (t′1)x (t′2)]

=σ2

∫ ∞
−∞

dt′γ (t1 − t′) γ (t2 − t′)

=σ2

∫ ∞
−∞

dtγ (τ − t) γ (t) . (4.26)

On the second line we used (4.20), while on the third we set t = t2 − t′.

We consider a discretized set of N points (evenly spaced) from x(t) and y(t). We write the
vectors x and y where the componets are, e.g. xi ≡ x(ti). We define the discretized matrix
Γij ≡ γ (ti − tj). We then have

yi = Γijxj (4.27)

We define the matrix

Σij ≡
σ2

∆t
δij, (4.28)

where ∆t ≡ T/ (N − 1), and N is the number of discretized points. We choose this scaling
so that the autocorrelation of xi approaches the correct behavior in the continuum limit, as
we show below. The probability distribution for each x is

PX (x) =

(
1√
2π

)N
1√

det Σ
exp

[
−1

2
xiΣ

−1
ij xj

]
. (4.29)
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The correlation for x is then

E [xixj] =

∫
dNxPX (x)xixj

=

∫
dNx

(
1√
2π

)N
1√

det Σ
exp

[
−1

2
xiΣ

−1
ij xj

]
xixj

=σ2 δij
∆t
. (4.30)

In the limit ∆t → 0, this approaches σ2δ (ti − tj),which is the autocorrelation function for
Gaussian white noise; see (4.20).

We obtain the probability distribution for y under a linear transformation of variables (note
the ordering of the indices)

PY (y) =

(
1√
2π

)N
1√

det Σ det Γ
exp

[
−1

2
yiΓ
−1
miΣ

−1
mnΓ−1

nj yj

]
. (4.31)

This expression gives the probability the N draws. We now need to take the continuum
limit. First we look at the argument of the exponential

yiΓ
−1mmiΣ

−1
mnΓ−1

nj yj =
1

σ2
xixi∆t

→ 2

Sx

∫ tf

ts

dt |x (t)|2

≈ 2

Sx

∫ ∞
−∞

dt |x (t)|2

=
4

Sx

∫ ∞
0

df |x̃ (f)|2

=4

∫ ∞
−∞

df
|ỹ (f)|2

Sy
. (4.32)

Here ts, tf are the start and end times for the series x(t). On the first line we used xi = Γ−1
ij xj,

and that Σ−1
ij = σ−1δij. On the second and third lines we converted the Riemann sum to

an integral (we took the continuum limit). We approximated the start/end times with ±∞.
On the last line we use x̃ = ỹ/γ̃, Sy = |γ̃ (f)|2 Sx, and that Sx is a constant, so we can pull
it into the integral. Remember that we assume that x, y, γ are all real, so that for example
x (−f) = x∗ (−f). Ignoring the constant normalization factor, we see that the probability
density function (the likelihood function) for y (t) is

P (y (t)) ∝ exp

[
−1

2
(y, y)

]
, (4.33)

where we have defined the inner product

(a, b) ≡ 2

∫ ∞
0

df
a (f) b∗ (f) + b (f) a∗ (f)

Sy (f)
. (4.34)
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Here Sy (f) is the spectral noise density for the process, and a, b can represent the Fourier
transform of particular draws. We interpret (4.33) as the likelihood function (up to normal-
ization) for colored WSS noise. We call (4.34) a matched filter. We define the signal to
noise ratio (SNR) for a signal s with noise n to be

ρ2 ≡ (s, s) = 4

∫ ∞
0

df
|s (f)|2

Sn (f)
. (4.35)

4.7 Matched filter theorem

We next derive the optimal test statistic for extracting a singal from WSS colored noise. We
consider a time series x(t) that can be written as

x (t) = s (t) + n (t) . (4.36)

We assume that n(t) can be written as a convolution with Gaussian white noise, as we
described in Sec. (4.6). We assume we are searching for a signal s (t) that we know how to
compute. We these assumptions, we can compute the optimal test statistic to distinguish
between the two following hypothesis:

Null hypothesis H0: x (t) = n (t).

Alternative hypothesis H1: x (t) = s1 (t) + n (t).

Here s1 (t) is a signal we are guessing is in the data. We compare the two hypothesis by
computing the likelihood ratio (likelihood for short for the rest of this section)

Λ (H1|x) ≡ P (x|H1)

P (x|H0)
. (4.37)

We use the likelihood function (4.33). We next show that s1 ∝ s maximizes Λ, which is the
matched filtering theorem.

If the null hypothesis is true, then the probability density function goes as

P (x|H0) ∝ exp

[
−1

2
(x, x)

]
. (4.38)

If the alternative hypothesis is true, then the probability density function goes as

P (x|H0) ∝ exp

[
−1

2
(x− s1, x− s1)

]
. (4.39)

We have used (4.34), with the noise power spectral density given by Sn(f). The normaliza-
tion factors cancel out in the likelihood ratio, and we are left with

Λ (H1|x) =exp

[
−1

2
(x− s1, x− s1) +

1

2
(x, x)

]
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= exp

[
(x, s1)− 1

2
(s1, s1)

]
. (4.40)

The matched filtering theorem states that the likelihood ratio Λ (H1|x) is maximized when
s1 ∝ s. To show this, we first note that likelihood ratio is maximized when the log-likelihood
ratio L is maximized. The log-likelihood is

L (s1) ≡ (n, s1) + (s, s1)− 1

2
(s1, s1) . (4.41)

We only consider s1 such that (n, s1) = 0 (this also holds for the “true” signal s). Moreover,
we fix (s1, s1) = c1, where c1 is a constant (otherwise the likelihood could be arbitrarily
big or small by rescaling the amplitude of s1) Maximizing the likelihood then reduces to
maximizing

L (s1) = (s, s1)− 1

2
c1. (4.42)

By the Cauchy-Schwartz inequality, we have that

(s, s1) ≤
√

(s, s)
√

(s1, s1). (4.43)

Equality only holds when s1 ∝ s. We conclude that choosing s1 ∝ s maximizes the likelihood
function (up to a proportionaly constant, which is fixed by the condition (s1, s1) = c1).

The task of finding a signal in colored WSS noise then reduces to finding a filtering function
s1 that is orthogonal to the noise, and that maximizes the value of the matched filter (x, s1).
In practice, we can determine the noise profile of the detector by measuring the response of
the detector in the (assumed) absence of any signal.

The matched filtering theorem is powerful, but it relies on several strong assumption that
are only approximately met in practice. First, it assumes that we know what we are looking
for–that is, that we have a template bank of templates si(t) that we can convolve with
the data. Even if we do have a template bank, it can be very computationally expensive
to search for the si that fits the data best, especially if the parameter space for si is large.
Efficiently evaluating the likelihood and searching through parameter space remains a topic
of active research in, e.g. the gravitational wave astronomy community (for a review, see
e.g. [CA11]). The matched filtering theorem also assumes the noise is stationary or WSS.
Most kinds of detectors (say a phone line, or a gravitational wave detector) suffer from non-
stationary noise, often called glitches. Provided those are well enough understood, they can
be subtracted out of the signal, although in practice it can be difficult to completely remove
glitches from a time stream.
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Chapter 5

Markov Chains

Parts of this chapter are inspired by sections in [ZJ08, Fel68]

First we define a few concepts about Markov chains. There is a large literature on Markov
chains. Here we discuss only a few aspects of the theory. In particular we will only discuss
discrete Markov chains–that is Markov chains where that make discrete jumps in time.

We will borrow some of the concepts from the discussion on stochastic processes in Chptr. 4.
A Markov chain is a sequence of random vectors (a stochastic process) {θ1,θ2, ...}, where
the probability distribution of θk+1 is dependent solely on θn. That is

P (θk+1 = j|θk = i,θk−1 = ik−1, · · ·θ0 = i0) = P (θk+1 = j|θn = i) . (5.1)

Here the j, im label the states of the Markov chain–notice that the subscript of θ denotes
what step we’re on in the Markov chain. We call P (θk+1 = j|θn = i) the transition prob-
ability. The probability distribution for θ0, P (θ0), is called the initial distribution.

Notice by the conservation of probability, we have∑
j∈S

P (θk+1 = j|θn = i) = 1, (5.2)

where the sum over all states of the Markov chain. In other words, witha Markov chain, in
the next step you must go somewhere with probability one–probability must be conserved.

If the transition probabilities are stationary, the transition probabilities do not depend on
the step n in the chain. In that case we sometimes denote the transition probabilities with
the simpler notation

P (θk+1 = j|θn = i)→ P (j|i) . (5.3)

We will only consider stationary transition probabilities.

20



5.1 Representations of Markov chains

Some references set P (j|i) = pij , others set P (j|i) = pji. While I find the latter notation
more natural, it seems like the most common notation is the first one (e.g. [Was10, PN14]),
so we pick that one

P (j|i) ≡ pij . (5.4)

By (5.2), and (5.4), we see that the elements of each row must sum to one∑
j∈S

pij = 1. (5.5)

With Eq. (5.4), the PDF of a chain {θ0 = i0,θ1 = ii, ...,θk = ik} is

P ({θ0 = i0,θ1 = i1, ...,θn = in}) = p0p0,1p1,2 · · · pk−1,k, (5.6)

When the states are scalars, we can set pij → pij to represent the components of a matrix.
Sometimes the transition probabilities are represented in terms of a state transition matrix
P , where the rows/columns are given by

Pij = pij. (5.7)

Another common way to describe a Markov chain is through a transition state diagram
(I find this to be especially useful for solving problems that involve Markov chains). One
draws an arrow between points in the state space that have nonzero transition probabilities
between them, and then labels each arrow with the transition probability.

5.2 Transition probabilities for scalar states

We next turn to a more vectorial representation of the evolution of probability distribution
for scalar random variables. We consider an initial probability distribution of states, which
we represent as a row vector

π0 =
(
P (θ0 = 1) , · · · , P (θ0 = n) .

)
. (5.8)

The probability distribution of of states for the next step in the Markov chain is

P (θ1 = j) =
∑
i∈S

P (j|i)P (θ0 = i) . (5.9)

In vectorial notation, we have

(π1)i = (π0)j Pji. (5.10)
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Iterating, we see that the probability distribution at the kth step is

πk = π0P
k. (5.11)

Finally, we note that from the law of total probability, we have

P (θm+n = j|θ0 = i) =
∑
k∈S

P (θm = j|θn = k)P (θn = k|θ0 = i) . (5.12)

We can rewrite these as follows

p
(m+n)
ij =

∑
k∈S

p
(n)
ik p

(m)
kj . (5.13)

These are called the Chapmon-Kolmogorov equations. Here we have used the notation

p
(n)
ij ≡ P (θn = j|θ0 = i) = pik1pk2k3 · · · pknj. (5.14)

5.3 Absorbing states

For a given state i, if there is an integer n such that

P (Xn = i|X0 = i) = 1, (5.15)

we say the state i is recurrent. If instead for all n we have

P (Xn = i|X0 = i) < 1, (5.16)

we then say that the state is transient. We say a state i is absorbing if

P (X1 = i|X0 = i) = 1. (5.17)

The condition (5.17) implies that once you are at state i, we cannot move to any other state.

5.3.1 Calculating absorption probabilities

Let ja is an absorbing state. The probability that a state i will eventually end up at ja is
called the absorption probability. We denote the absorption probability by

ai,ja ≡ P (absorption by ja|X0 = i) . (5.18)

To compute ai,ja , we first set ai,ka = 0 for any other absorbing states ka 6= ja. This is
because for any other absorbing state, clearly we must have

ai,ka = P (absorption by ka|X0 = ja) = δka,ja , (5.19)
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since P (absorption by ja|X0 = ja) = 1 for all absorbing states. To compute the ai,bja for all
i that are not absorbing, we use the law of total probability to derive a set of linear equations

ai,ja =P (absorption by i|X0 = ja)

=
∑
k∈S

P (absorption by ja|X1 = k)P (X1 = k|X0 = i)

=
∑
k∈S

ak,jaP (k|i) . (5.20)

That is we have (for all non-absorbing states)

ai,ja =
∑
k∈S

pikak,ja . (5.21)

On the last line we made use of the fact that since the transition probabilities are stationary,
ai,ja does not depends only on i and ja, that is it does not depend on what step of the
chain we are on. With aka,ja = δka,ja for the absorbing states, (5.21) defines a set of linear
equations that we can solve for the absorption probabilities to ja, ak,ja , for the non-absorbing
states.

5.3.2 Calculating mean absorption times

In addition to determine the probability of reaching a given absorbing state ja, another
question of practical importance is determining the expectation of the number of steps it
will take to reach any absorbing state. We denote the mean steps by

E [steps T until absorption|i] = µi. (5.22)

Clearly µja = 0 for all absorbing states ja. To compute µi for non-absorbing states i, we
take one step, and use the law of total probability (iterated expectation)

µi =E [steps T until absorption|θ0 = i]

=1 +
∑
j

E [steps T until absorption|θ1 = j]P (θ1 = j|θ0 = i)

=1 +
∑
j

µjP (j|i) . (5.23)

That is we have (for all non-absorbing states)

µi = 1 +
∑
j

pijµj . (5.24)

Equation (5.24) defines a set of linear equations for the expectation of the absorption time.
Note that this is the expectation to be absorbed by any state, as opposed to (5.21), which
defines the probability to be absorbed by a specific state ja.
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Chapter 6

Martingales

Parts of this chapter are inspired by sections in [ZJ08, Fel68].

I’ll assume familiarity with Chptr. 4 and Chptr. 5. A martingale is a sequence of random
vectors (a stochastic process) {θ1,θ2, ...}, where the expectation of step k+ 1 is equal to the
value of the chain at step k. That is

E [θk+1|θk = i,θk−1 = ik−1, · · · ,θ0 = i0] = i. (6.1)

Notice that the martingale property (6.1) implies that the (unconditioned) expectations at
every step are equal to one another. We assume a probabilistic distribution for the initial
data θ0.

E [θ0] =
∑
i∈S

iP (i) . (6.2)

By the law of total expectation (A.23) and the martingale property (6.1), we then have

E [θk] =
∑
i∈S

E [θk|θk−1 = i]P (i)

=
∑
i∈S

iP (i)

= E [θ0] . (6.3)

To reiterate, the expectation of every step of a martingale is the same

E [θk] = E [θ0] . (6.4)

The prorty (6.4) of martingales reflects the notion of a “fair game”.

We can interpret each step of the martingale as playing one round of a game, with the
different states reflecting your earnings. Your expected future earnings at each round are
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equal to your initial earnings–thus “on average” you do not earn or lose any money. This
property holds for the namesake of martingale: the martingale betting strategy. In this
strategy (which arose in 18th century France), you bet double or nothing for every round
of some win/lose game until you win, thus recovering all the previous money you had lost.
the problem with this strategy is that in real life you may run out of money before you
can double your bet. The generalization of the probability of this happening–that is the
probability of going bankrupt before winning a game–is called the “gamblers ruin” problem.

6.1 Martingale 6= Markov chain

The martingale property (6.1) looks superficially similar to the definition of a Markov process,
but it’s not. A Markov process does not need to be a martingale process, and a martingale
process does not need to be a Markov process. As with Chptr. 5, we only consider discrete
martingales–that is martingales where there are discrete jumps in time between states.

To see how a martingale and Markov chain are different, consider a Markov chain {θ1, ...},
with transition probabilities P (j|i). In order for the Markov chain to be a martingale, it
must satisfy ∑

j∈S

jP (θk+1 = j|θk = i) = i. (6.5)

Clearly this property is not always satisfied for all Markov chains (for example, consider a bi-
ased coin, with absorbing states at heads and tails–only for an unbiased coin will the outcome
of the flips be a matingale). We conclude that not every Markov chain is a martingale.

One can also show that not every martingale is a Markov chain.

6.2 Stopping rules and Wald’s equality

A stopping time for a stochastic process θi

6.3 Symmetric random walk

A widely studied martingale is the symmetric random walk. A symmetric random walk
is a stochastic process, where at each step we have the random variable

Sk ≡
k∑
i=1

θi. (6.6)
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The θi are identically distributed random variables {θi} in an n-dimensional Euclidean
space. These variables have unit length, and their PDF to point in angular direction φ =
(φ0, ..., φn−1) is uniform. The expectation for step θk is then

E [θi] =

∫
dΩn−1u (φ) = 0, (6.7)

where u (φ) is a unit vector pointing in the direction φ. We additionally have

E
[
|θi|2

]
=

∫
dΩn−1 |u (φ)|2 =

∫
dΩn−1 = 1. (6.8)

Finally, as the vectors are independent, we have

E [θi · θj] = E [θi] · E [θj] = 0. (6.9)

These facts imply that

E [Sk] =0, (6.10)

E
[
|Sk|2

]
=k. (6.11)

Notice that by the convexity of the expectation, we have E [|Sk|] ≤
√
k.

The sequence {Sk} defines a martingale, as

E [Sk+1|Sk = s,Sk−1 = sk−1, ...,S1 = s1] =

∫
dΩn−1 (s+ u (φ))

=s. (6.12)

The sequence {|Sk|2 − k} also defines a martingale. We define the random variable Yk ≡
Sk − k to reduce clutter. We define y ≡ s− k, and calculate:

E [Yk+1|Yk = y,Yk−1 = yk−1, ...,Y1 = y1] =

∫
dΩn−1

(
|s+ u|2 − (k + 1)

)
= |s|2 + 1− (k + 1)

= |s|2 − k
=y. (6.13)
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Chapter 7

Numerical integration

We we discussed in Sec. 1, in parametric Bayesian statistics our goal is to determine the
posterior probability distribution of the parameters of the model under consideration, given
a set of measured data, or to determine the total evidence for the model.

A large portionof omputational, parameteric Bayesian statistics essentially consists of deter-
mining ways to compute high dimensional integrals. To understand why we need to compute
integrals in parameteric Bayesian statistics we look again at Bayes theorem

P (θ|x) =
L (θ) π (θ)

Z (x)
, (7.1)

where π is the prior and the the likelihood L and evidence Z are

L (θ) =
N∏
i=1

P (xi|θ) , (7.2)

Z (θ) =

∫
dkθL (θ)π (θ) . (7.3)

We have assumed the measurements of x have been taken idependently on one another in
the equation for the likelihood. We assume that the parameters θ are continuous. Clearly if
we want to determine P (θ|x) directly, we need to compute the evidence Z, which requires
integrating over the likelihood. Beyond this though, many summary statistics of practical
interest require computing an integral. For example, we may be interested in the expectation
of θ and its covariance matrix

µi = E [θi] ≡
∫
dkθP (θ|x) θi, (7.4a)

Cij ≡ E [(θi − µi) (θj − µj)] ≡
∫
dkθP (θ|x) (θi − µi) (θj − µj) , (7.4b)

We cover methods to compute high dimensional integrals, as in many applications k � 1 (or
at least, k & 10). In this regime, it is usually computationally infeasible to compute (7.3)
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using traditional deterministic methods such as the trapezoid rule or Gaussian quadrature.
For example if k = 10, and if we have 10 quadrature points in each parameter direction, we
will need to make N & 1010 evaluations for a trapsoid rule approximation ot the evidence.
The likelihood function is often a highly complex function with sharp peaks, so many more
than 10 grid points would be needed to resolve in each direction in order to properly resolve
the posterior.

As far as I am aware, the most efficient way to compute high dimensional integrals is through
stochastic/Monte Carlo methods. The fact that Monte Carlo methods are the best methods
to compute many high dimensional integrals is somewhat surprising, as they have very slow
rates of convergence. In general, the error of Monte Carlo integrals goes as N−1/2, where
N is the number of points used in the approximation. In one dimension, approximations as
simple as the trapezoid rule converge to the correct answer as 1/N2 (e.g. [PTVF92]). This
being said, the accuracy of methods such as the trapezoid rule rapidly deteriorate at higher
dimension, while for Monte Carlo methods, the accuracy decreases as N−1/2, regardless of the
dimensionality of the problem, althouh the proportionality constant to this decrease strongly
depends on the choice of algorithm one uses, and the dimensionality of the problem. We
only consider stochastic/Monte Carlo integration methods in this chapter.

In effect, Bayesian parametric statistics reduces statistics to probability theory, and many
problems in probability theory can be reduced to problems in the integration of complci-
ated functions in high dimensional spaces. There are three main approaches to integration,
Riemann integration, Riemannian-Stieltjes integration, and Lebesgue integration.

Monte Carlo integration can be thought of as providing an approximation to the Rie-
mannian integral. We review Monte Carlo integration in Sec. 7.1. The most commonly used
variant of Monte Carlo integration is Markov chain Monte Carlo (MCMC) integration,
which can be thought of as approximating the Riemann-Stieltjes integral. We eview MCMC
integration in Sec. 7.2. The Monte Carlo approximation of certain kinds of Lebesgue inte-
grals goes under the name Nested Sampling (NS), which we review in Sec. 7.3. There
are many excellent, long discussions of all these methods on the internet and elsewhere (e.g.
[BGJM11, Ski06, HFM18]), so we only outline the main ideas.

Before continuing, we mention two applications where you do not need to compute an integral
(and hence do not need to use the methods discussed here). If we only need to compute
the ratio of the posterior for two parameters values θ1 and θ2, we only need to determine
P (θ1|x) /P (θ2|x) = L (θ1) /L (θ2), which does not involve any integrals. We also do not
need to compute any integrals if we only want the maximum of the posterior or the likelihood
(the maximum likelihood estimator). We review some maxization methods in Chptr. 8.
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7.1 Monte Carlo integration

Consider a function f (θ), and an integral over the domain Ω

I =

∫
Ω

dkθf (θ) . (7.5)

We can view (7.5) as the expectation of f over Ω, with respect to the uniform distribution
U (Ω). In Monte-Carlo integration, we sample points uniformly on Ω, and then approximate
I via

IN =
1

N

N∑
i=1

f (xi) . (7.6)

Here N is the number of times we have sampled from U (Ω), and xi are the sample points.
Monte Carlo integration works if we can efficiently evaluate f . From the law of large numbers,

lim
N→∞

IN = I. (7.7)

The standard error of the mean goes as N−1/2, which gives us our estimate for the error of
this approximation; that is we can write (e.g. [PTVF92])∫

Ω

dkθf (θ) ≈ V (Ω)

(
E [f ]±

√
V [f ]

N

)
, (7.8)

where V (Ω) is the volume of Ω. We see that the convergence of Monte Carlo integration
scales as 1/

√
N , regardless of the dimensionality of the integral. This is the key property

of stochastic integration methods, and what makes them widespread use in computing high
dimensional integrals. In one dimension, almost any other quadrature method outperforms
Monte Carlo integration (for example, the error to the trapezoid rule scales as 1/N2), but
for higher dimensional integrals the convergence of most methods rapidly deteriorates.

We can think of Monte Carlo integration as an example of a stochastic approximation to
the Riemann integral of f . Recall that the Riemann integral is the limit of the sum over
f(θi) multiplied by the volume of a small (possibly multidimensional) rectangle centered on
f (θi), which we call V (θi).∫

dkθf (θ) = lim
N→∞

N∑
i=1

V (θi) f (θi) . (7.9)

In effect, in Monte Carlo integration we approximate V (θi) with n/N , where n is the number
of draws we made in that volume.

Monte Carlo integration works best if most of the integral I is not concentrated in a few
small volume regions; that is if f (θ) is not too “peaked”. Most likelihoods are strongly
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peaked though–for example from the Bernstein–von Mises theorem (see Appendix A) we
expect the likelihood to approximately behave as a multivariate normal function around the
maximum likelihood estimator as the amount of data we collect goes to infinity. Moreover
the covariance matrix elements scale as 1/Nd, where Nd is the number of data points, so
the distribution becomes increasingly localized near the maximum likelihood estimator, and
more generally near other local maxima of the likelihood. That is, selecting θi from the
uniform distribution could mean that we are mostly sampling from places where f (θi) is
much smaller than near the peaks. In that case, we would be missing most what contributes
to the integral (7.5), which slows down the rate of convergence (the prefactor in front of the
asymptotic scaling of 1/

√
N).

This motivates the introduction of integrations methods that preferentially sample from
regions near the local maxima of the integrand in (7.5). We next discuss two such adaptive
methods: Markov chain Monte Carlo (MCMC) methods, which can also be thought of as an
adaptive approximation to the Riemann integral, and nested sampling methods, which can
be though of as an adaptive approximation to the Lebesgue integral1

7.2 Markov chain Monte Carlo (MCMC)

The idea behind MCMC integration is to generate the random samples for the Monte Carlo
integration of Ω dynamically, through a Markov Chain. To do this, we rewrite the integral
(7.5) as follows

I =

∫
dkθp (θ) g (θ) , (7.10)

where ∫
dkθp (θ) = 1. (7.11)

That is, we interpret p (θ) as a probability distribution. We can view (7.10) as a Riemann-
Stieltjes integral,

I =

∫
dF (θ) g (θ) , (7.12)

with the measure dF (θ) ≡ dkθp (θ). We defined

F (λ) ≡
∫ g(θ)<λ

0

dkθp (θ) . (7.13)

1For smooth functions–which is what the posterior distribution function P (θ|x) is, provided the prior
and our model P (x|θ) are smooth–there is no substantive, practical difference between the Riemann and
Lebesgue integral. Nevertheless we will see that there are different strengths and weaknesses to MCMC and
nested sampling, unrelated to the kinds of integrals they are approximating.
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Properly speaking, MCMC is a method for drawing samples from p (θ), for use in calculating
integrals of the form (7.10). It turns out that a histogram of our sampling of p (θ) will begin
to resemble p (θ) as the number of draws goes to infinity. For this reason, MCMC methods
are often seen as ways to determine the “shape” or functional properties of p (θ). Here we
take the perspective of numerical integration theory, so we think of p (θ) = f (θ) /g (θ) as
a weighting factor for our integration of (7.5). We refer to Chapter 5 for a more a discus-
sion of Markov chains. We will only consider Markov chains with stationary transition
probabilities, where the transition probabilities P (θn+1|θn) do not depend on n.

Operationally, MCMC integration of (7.5) goes as follows.

1. We pick an initial point θ1, and then generate new samples θn based on a suitably
chosen transition probability.

2. For the first few iterations of the Markov Chain, the points θn will be highly correlated
with our initial start point, but if one runs the Markov Chain for enough iterations,
the points {θn} will eventually converge to the target distribution p (θ).

3. Integration then proceeds as in Monte Carlo integration

IN =
1

N

N∑
i=1

g (θi) , (7.14)

with similar convergence properties to Monte Carlo integration (the error will asymp-
totically go does as 1/

√
N). The hope though is that the prefactor to the leading

asymptotic decay will be much smaller than it would be for regular Monte Carlo inte-
gration.

We see that we can view (7.14) as an approximation to the Riemann–Stieltjes integral (7.12).

There are whole volumes on MCMC (e.g. [BGJM11]); for a nice shorter review see [HFM18].
Here we only outline what a “suitable” Markov Chain transition probability must satisfy,
the Metropolis-Hastings algorithm, and some limitations of most MCMC methods.

An MCMC chain must eventually limit to a stationary distribution that is equal to p (θ). A
sufficient (but not necessary) conditions for a Markov chain to have a stationary distribution
Q (θ) is that the transition probabilities must satisfy the detailed balance condition

P (θ|ψ)Q (ψ) = P (ψ|θ)Q (θ) , (7.15)

for any θ,ψ. To see why detailed balance implies stationarity, we compute the probability
of a transition to new step θn. The probability distribution for a new step θ is equal to
the integral (or sum, if there a discrete number of points) over all possible earlier points ψ.
We assume those are distributed according to the probability distribution Q (ψ). We then
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show that the distribution for θ, P (θ), is equal to Q (θ), which implies that the chain is
stationary. We have

P (θ) =

∫
dkψP (θ|ψ)Q (ψ)

=

∫
dkψP (ψ|θ)Q (θ)

=
Q (θ)

P (θ)

∫
dkψP (ψ,θ)

= Q (θ) . (7.16)

This proves existence of a stationary chain, but it does not prove uniqueness. Proving unique-
ness of the stationary distribution is beyond the scope of these notes. Most practitioners
simply ignore the question of uniqueness.

Finally, we discuss an example of a Markov Chain that satisfies the detailed balance con-
dition for the target function p (θ) (lower case p; see (7.10)): the Metropolis-Hastings
algorithm. Consider a point θ. We draw ψ from the proposal probability Q (ψ|θ) (we
are free to specify Q). We then draw a random variable x from the uniform distribution
U (0, 1). We next compute the acceptance probability

r = min

(
1,
p (θ)

p (ψ)

Q (θ|ψ)

Q (ψ|θ)

)
. (7.17)

If x > r, we jump to the point ψ, otherwise, we stay at the point θ. To prove that transition
probability in the Metropolis-Hastings algorithm satisfies the detailed balance condition, we
rewrite the transition probability amplitude as being equal to the proposal probability times
the acceptance probability

P (ψ|θ) = r ×Q (ψ|θ) . (7.18)

We then have

P (θ|ψ) p (ψ) = min (p (ψ)Q (ψ|θ) , p (θ)Q (θ|ψ))

= min (p (θ)Q (θ|ψ) , p (ψ)Q (ψ|θ))

= P (ψ|θ) p (θ) . (7.19)

7.3 Nested sampling

As with MCMC integration, we consider integrals of the form

I =

∫
dkθp (θ)L (θ) . (7.20)
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We can only integrate positive definite functions with the nested sampling algorithm, which
is why we use the slightly different notation of L instead of g here: we restrict to functions
such that L ≥ 0. This notation is motivated from the following: the main application of the
nested sampling integration is to compute the evidence Z, which is an integral of the prior
probability distribution times the likelihood

Z =

∫
dkθπ (θ)L (θ) . (7.21)

Before we describe the algorithm, we first need to rewrite (7.20) as an integral over the level
sets of L (θ). To do this, we write (7.20) as Riemann-Stieltjes integral (7.12), and then
integrate by parts. We define the function

X (λ) ≡
∫
L(θ)>λ

dkθp (θ) . (7.22)

As λ increases, X decreases from 1 to 0. With this, we have

I =

∫
dkθp (θ)L (θ) =−

∫
dXL

=−X (L)L
∣∣L=Lmax

L=0
+

∫ Lmax

0

dLX (L)

=

∫ Lmax

0

dLX (L) . (7.23)

We assumed that Lmin = 0 (which holds for the likelihood function), and used that X = 0
at L = Lmax. We assume that we can invert X (L) to the function L (X). We can then
rewrite (7.23) by integrating by parts, to obtain

I = −
∫ 0

1

dXL (X) =

∫ 1

0

dXL (X) . (7.24)

Unlike (7.20), (7.24) is a one-dimensional integral. In (7.24) we should think of L as the
parameter in X (L), not as L (θ). Nested sampling provides a noisy approximation to (7.24),
through a partitioning of the X interval, and hence provides a noisy approximation to the
Lebesgue integral of (7.20).

To understand why (7.24) is the Lebesgue integral of (7.20), recall that the Lebesgue integral
is the limit of the sum over gi ≡ g (θi) multiplied by the Lebesgue measure of the set Ei of
points θj for which g (θj) ≈ g (θi)

IN =
N∑
i=1

giµ (Ei) . (7.25)

We can think of giµ (Ei) as the discretization of dXλ (X).

The nested sampling algorithm goes as follow

1. We draw n points θi from p (θ), treating it as a probability distribution. Set X0 = 1.
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2. Repeat for N times, so you have the sequence X1, ..., Xn and Lmin,1, ..., Lmin,N . For
the jth iteration

(a) Record the lowest value of = Lmin,j = L (θj). Set Xj = e−j/n, or alternatively set
Xj = tjXj−1, where tj is drawn from the beta distribution Beta (1, n).

(b) Remove the value of θj that minimizes L (θ), and then sample again from p (θ),
until you get a point θk such that L (θk) > Lmin,j.

3. The integral can then be obtained by summing the L values via some quadrature rule

IN =
N−1∑
i=1

wif (Lmin,i) . (7.26)

For example, for the trapezoid rule we would set wi = Xi − Xi−1 and f (Lmin,i) =
(Lmin,i + Lmin,i−1) /2.

In the context of Bayes rule, where IN is our estimate of the evidence Z, we can obtain an
estimate for the posterior probability distribution via the rule

p (θi) ≈
wif (Lmin,i)

IN
. (7.27)

One of the tricky things to understand about the nested sampling method is the value of
the measure of the likelihood Lmin,i, Xi. Consider a sample from p (θ): {θj}, subject to
L (θj) > Lmin,j−1. So long as we draw θj from p (θ) subject to to the constraint L (θ) >
Lj, the values of the volumes X (θj) are drawn from U (0, Xj−1). This follows from the
probability integral transform, which we review in Chptr. A. Then Xj = tjXj−1, where
tj is the largest of n uniformly distributed numbers in the interval (0, 1). The number tj is
called the shrinkage factor. Notice that we have

Xj =

j∏
i=1

ti. (7.28)

The cumulative probability distribution function for the maximum of n randomly distributed
numbers in that interval is

C.D.F. (tmax) = P (max {t1, ..., tn} < tmax)

= (P (t < tmax))
n

= tnmax. (7.29)

The probability density function for the maximum is then the beta distribution Beta (1, n),
that is

P (tmax) = ntn−1
max. (7.30)
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To estimate Xj then, we could take a draw from the Beta distribution, t, and multiply
that by Xj−1. To get a (presumably) less noisy answer, we could set Xj to be its averaged
expected value. We take the expectation of the log of Xj, to simplify the calculation of the
expectation

E [logXj] =

j∑
i=1

E [log ti] . (7.31)

As the ti are independent, we can estimate the error of this approximation by computing
the variance

V [logXj] =

j∑
i=1

V [log ti] . (7.32)

The expectation value of the logarithm of tmax is

E [log tmax] =

∫ 1

0

dt ntn−1 log t

=− 1

n
. (7.33)

The variance of the log of tmax

V [log tmax] =E
[
(log tmax)

2]− (E [log tmax])
2

=

∫ 1

0

dt ntn−1 (log t)2 − 1

n2

=
1

n2
. (7.34)

Combining everything, we see that the shrinkage factor is approximately

logXj ≈j E [log tmax] +
√
j V [log tmax]

=− j

n

(
1± 1√

j

)
. (7.35)

This gives us

Xj ≈ e−j/n. (7.36)

Our approximation to the integral gets better as we add more points n, and as we take more
steps N . We incur the biggest relative errors in the integration for the first few small steps
j, but so long as L is highly peaked, and we take very small steps, those terms contribute
very little to the total integral.
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Chapter 8

Numerical optimization

While most often we want to compute integrals of the posterior probability distribution
(for example, to compute the mean or covariance matrix of the posterior), sometimes it is
informative to simply compute its maximum, or even just the maximum of the likelihood.
Again we consider the posterior

P (θ|x) =
L (θ) π (θ)

Z (x)
, (8.1)

The value of θ that maximizes L (θ) is the maximum likelihood estimator (MLE), and
the value of θ that maximizes L (θ)π (θ) is the maximum a posteriori probability esti-
mator (MAP). Note that the MLE and MAP do not gives us any knowledge of the variance
of those parameters–that requires knowledge of the full posterior probability distribution.
This in turn requires integration of the likelihood.

From a numerical point of view, its convenient to consider numerical minimizers, and to find
the MLE by finding the minimum of the negative log likelihood, which we call ` (θ)

` (θ) ≡ − logL (θ) . (8.2)

It is convenient to consider the log likelihood, as the likelihood itself can vary drastically
in value between its maxima and minima, which can be hard for a computer to resolve
with finite precision arithematic. The likelihood, prior, evidence, and posterior are positive
definite quantities as well, so there is no change of taking a logarithm of these quantities.

Here we review a few minimization methods. There is no best method that will work for all
likelihoods, so we only review the basics of a few basic methods that underlie more complex
optimization procedures. For concreteness we will focus on minimizing the negative log
likelihood ` (θ).
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8.1 Convex functions

We first consider the problem of optimizing convex functions. While the posterior is almost
never convex, it is still useful to review this case first as the local max/min of a strictly convex
function is the global maximum/minimum (this is almost never the case for non-convex
functions). Because of this, some methods (namely, Newton’s method and its extensions)
used to find the minimum of functions try to convert the problem into one for finding the
minimum of a convex function.

A convex function f (θ) : X → R satisfies

f (tθ1 + (1− t)θ2) ≤ tf (θ1) + (1− t) f (θ2) , (8.3)

for t ∈ [0, 1] and for all θ1,2 ∈ X (for example, X = Rn). A strictly convex function
satisfies (8.4) except the ≤ is replaced by <, and t ∈ (0, 1) instead.

The local minimum of a convex function is the global minimum of the function. This is
easy to show. Say θ∗ is a local minimum, and assume that we have found θ such that
f (θ) < f (θ∗). Then we would have

f (tθ∗ + (1− t)θ) ≤tf (θ∗) + (1− t) f (θ)

<tf (θ∗) + (1− t) f (θ∗) = f (θ∗) . (8.4)

Setting t = 1, we encounter a contradiction, which concludes the argument. We see for a
strictly convex function, a local minimum is a global minimum, and the global minimum is
unique.

8.2 Gradient descent

First we consider a linear method for finding local minima–gradient descent. To understand
this method, we Taylor series expand the negative log likelihood about a fiducial point θ0

` = `0 + (θ − θ0)T g0 +
1

2
(θ − θ0)T H0 (θ − θ0) + · · · , (8.5)

where

g0,i ≡ ∇i` (θ)
∣∣∣
θ=θ0

, (8.6)

H0,ij ≡ ∇i∇j` (θ)
∣∣∣
θ=θ0

. (8.7)

As a local minimum θ∗, the gradient of the function is zero, and the Hessian is positive
definite. Near a local minimum then, we expect the gradient to be pointing “away” from
the local minimum. Thus if move in the opposite direction to the gradient, we move in the
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direction of the local minimum. In gradient descent then, we pick a fiducial value of θ0, and
then iterate the following

θn+1 = θn − γngn. (8.8)

Where 0 < γn is a scalar that one can introduce to make the change between steps be less
large. We stop iterating when |θn+1 − θn| < ε, where |· · · | is a norm of our choosing and
0 < ε is a pre-set tolerance.

While gradient descent is an easy algorithm to implement, it suffers from a few problems.
First, the method (if it converges) only find a local minimum, or possibly only a saddle point.
Also, it can be tricky to find a good value of γn. If γn is too small, the method converges
very slowly. If γn is too large, the method may never converge.

8.3 Stochastic gradient descent

Typically the gradient descent algorithm described in (8.2) will only find a local minimum
of the target function ` (θ). The idea behind stochastic gradient descent is to not take the
full gradient of ` (θ) when taking the step (8.8). That is, one instead computes

gInn,i ≡ ∇i` (θ)
∣∣∣
θ=θn

δIni, (8.9)

where δIni = 1 if i ∈ In and is zero otherwise. Here In is a randomly chosen set if indices
{i1,n, ...ik,n}. At each step we change the set In. In stochastic gradient descent we then
effectively take jumps in parameter space down randomly chosen gradients of the target
function. Empirically, in many cases this allows the algorithm to jump out of local minima
and saddle points of the target function. While there is no general method to determine
if the algorithm has reached a global minimum, it almost always finds a minimum that is
smaller than could be found with a simple gradient descent method.

In practice, a common way to use the algorithm is to pre-set several batches of indices
I1, ..., Ip, and then to shuffle through those sets in each iteration. The simplicity and effec-
tiveness of stochastic gradient descent makes it a widely used algorithm.

8.4 Newton’s method

We next consider a quadratic method for finding local minima–Newton’s method (this is
Newton’s method for optimizing a function, not for finding the root to a function). To
understand this method, we Taylor series expand the negative log likelihood about a fiducial
point θ0

` = `0 + (θ − θ0)T g0 +
1

2
(θ − θ0)T H0 (θ − θ0) + · · · , (8.10)
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where

g0,i ≡ ∇i` (θ)
∣∣∣
θ=θ0

, (8.11)

H0,ij ≡ ∇i∇j` (θ)
∣∣∣
θ=θ0

. (8.12)

We choose θ to minimize the quadratic Taylor series expansion. Assuming thatH0 is positive
definite, minimizing the quadratic Taylor series expansion is an exercise in minimizing a
convex function. The minimum is then located at the zero of the gradient of the second
order Taylor series. We find that

g0 +H0 (θ − θ0) = 0 =⇒ θ = θ0 −H−1
0 g0. (8.13)

This motivates Newton’s method. Starting with a fiducial point θ0, we iterate in θn,
where at each iteration we set

θn+1 = θn − γnH−1
n gn. (8.14)

Where 0 < γn ≤ 1 is a scalar that one can introduce to make the change between steps be
less large. We stop iterating when |θn+1 − θn| < ε, where |· · · | is a norm of our choosing
and 0 < ε is a pre-set tolerance.

As with the gradient descent method, Newton’s method may only find a local minimum of
saddle point. There are also numerous technical problems with inversion of the Hessian.
First, the Hessian matrix may be very large if there are many parameters, so it could be
hard to invert (it may be ill conditioned). Additionally the Hessian could be singular, or
nearly singular. We note that the Hessian may not be positive definite either at a given
point (it often won’t be), which in principle isn’t fatal to the method, but depending on the
size of the eigenvalues to the Hessian, large negative eigenvalues could dramatically change
the value of θn+1 versus θn.
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Chapter 9

Linear regression

Here we review some aspects of linear regression. We adopt a Bayesian viewpoint to motivate
linear regression, although frequentist concepts may enter the discussion at several places.
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Appendix A

Probability theory

A.1 Note on notation

We denote the probability of measuring θ by P (θ), the joint probability by P (θ,x), and the
conditional probability by P (θ|x). In probability theory it is common to denote a probability
distribution function (PDF) as fX (x) for a random variable X. To get a probability from a
continuous PDF, you need to perform an integral. In other words, technically fX (X) is not
a probability, but

∫
V
dnxfX (X) over some volume V is a probability. In situations where

we may be refering to either a PDF or a probability, we will simply use P , which hopefully
won’t be too confusing.

When a random variables X has a PDF fX (x|θ), we say X ∼ f (θ), where f denotes that
probability and θ are the hyperparameters of the model.

A.2 Conditional probability and Bayes theorem

The conditional probability is

P (θ|x) =
P (θ,x)

P (x)
. (A.1)

Using this, we have Bayes theorem

P (θ|x)P (x) = P (x|θ)P (θ) . (A.2)

Bayes theorem is more often written as

P (θ|x) =
P (x|θ)P (θ)

P (x)
. (A.3)
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As we discuss more in Chptr. 1, we can view P (θ|x) as the distribution of model parameters
given a model P (x|θ), and some prior knowledge of the model parameters P (θ).

A.3 Cumulative distribution function

The cumulative distribution function (CDF) F for a probability distribution function
fΘ is

FΘ (ξ) = P
(
θ < F−1

Θ (ξ)
)

=

∫
P (θ)<ξ

dkθfΘ (θ) , (A.4)

where

F−1
Θ (ξ) ≡ inf {θ : FΘ (θ) ≥ ξ} . (A.5)

Note that FΘ

(
F−1

Θ (θ)
)

= θ. Sometimes in the literature you’ll see F−1
Θ (ξ) – which we can

efectively think of as the inverse of the CDF – is called the percent point function.

The probability integral transform states that the random variable Ξ defined to be

Ξ = FΘ (ξ) , (A.6)

has the standard uniform distribution, that is Ξ ∼ U (0, 1). To prove this, we look at the
CDF of ξ

FΞ (ξ) = P (Ξ < ξ)

= P (FΘ (θ) < ξ)

= P
(
θ < F−1

Θ (ξ)
)

= FΘ

(
F−1

Θ (ξ)
)

= ξ. (A.7)

We see that the CDF of FΞ (ξ) is the same as the CDF for the uniform distribution U (0, 1).
We conclude that Ξ ∼ U (0, 1). This fact is used in the nested sampling integration algorithm,
which we discussed in Chpt. 7.

A.4 Functions of random variables

We consider two random (scalar) variables X and Y , with the join PDF fX,Y (x, y). Our goal
is to find the PDF of the function Z (X, Y ) (generalizing to functions of a larger number of
random variables is straighforward). To find this, we first determine the set

Az = {(x, y) : Z (x, y) ≤ z} . (A.8)
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Given this, we can then compute the CDF

FZ (z) =

∫
Az

dxdyfX,Y (x, y) . (A.9)

From the CDF we can then compute the PDF by taking the derivative of the CDF

fZ (z) =
d

dz
FZ (z) . (A.10)

A.5 Change of variables for injective mappings

If we restrict ourselves to injective mappings between random variables, we can derive a
simple closed-form expression for the PDF of a variable Ψ (Θ). Notice that we do not need
to restrict ourselves to scalar random variables here. Consider a PDF fΘ (θ). What is the
probability distribution to P (ψ (θ)), where ψ is some function of θ? The following remains
unchanged under a change of variables∫

V

dkθfΘ (θ) =

∫
V

dkψfΨ (ψ)

=

∫
V

dkθ |det (Jij)| fΨ (ψ) . (A.11)

We viewed V as a geometric volume (that is, it is independent of the coordinate choice we
use). Here

Jij ≡
∂ψi

∂θj
, (A.12)

is the Jacobian matrix. Equating terms within the integral, we find that

fΨ (ψ) =
1

|det (Jij)|
fΘ (θ) . (A.13)

As an example application of this formula, we consider the posterior probability distribution
for ψ (θ). If ψ (θ) is not injective, we need to replace the RHS of (A.14) with a sum over
the different values of θ that map to the same ψ. In other words, we have

fΨ (ψ) =
∑

θ : ψ(θ)=ψ

1

|det (Jij)|
fΘ (θ) . (A.14)

Note that in general this “sum” may in fact be an integral. From Bayes theorem (A.3), we
then have

fΨ (ψ|x) =
fX (x|ψ (θ)) fΨ (ψ)

fX (x)

=
1

|det (Jij)|
fX (x|ψ (θ)) fΘ (θ)

fX (x)
. (A.15)

That is, to find the probability distribution for some function of the distribution parame-
ters, we only need to find the probability distribution for the prior under that change in
coordinates.
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A.6 Conditional probability

The conditional probability is defined by

P (θ,ψ) ≡ P (θ|ψ)P (ψ) . (A.16)

For PDFs, a useful result is that

fΘ (θ) =

∫
dnψfΘ|Ψ=ψ (Θ) fΨ (ψ) . (A.17)

A.7 Expectation and covariance

We review a few basic definitions from probability theory, as they come up later in the notes.
We define the expectation of a random variable Θ (x) to be

E [Θ] ≡
∫
dkxfX (x) Θ (x) , (A.18)

where fX is the PDF of x. Sometimes we denote the expectation with µΘ. The variance is

Vij [Θ] ≡ E
[
(Θi − µΘi

)
(
Θj − µΘj

)]
. (A.19)

The covariance for two random variables Θ,Ψ is

Cij [Θ,Ψ] ≡ E
[
(Θi − µΘi

)
(
Ψj − µΨj

)]
. (A.20)

Note that we can think of the expectation of two scalar random variables Θ,Ψ as an inner
product

E [ΘΨ] = 〈Θ,Ψ〉 . (A.21)

It is easy to see from (A.18) that (A.21) satisfies the properties of an inner product: 〈Θ,Θ〉 ≥
0, 〈Θ,Ψ〉 = 〈Ψ,Θ〉, and linearity.

Consider a random variable Θ (ψ). Say we want this variable to represent another random
variable, say the parameters of the posterior θ. We then call Θ an estimator for θ. The
bias of Θ then is

b (Θ) ≡ E [Θ]− θ. (A.22)

If b = 0, then Θ is an unbiased estimator for θ.

The law of total expectation states that

E [Θ] = E [E [Θ|Ψ]] . (A.23)

44



This follows from the definition of the expecation

E [E [Θ]] =

∫
dnψE [Θ|Ψ = ψ] fΨ (ψ)

=

∫
dkx

∫
dnψΘ (x) fX|Ψ=ψ (x) fΨ (ψ)

=

∫
dkxΘ (x) fX (x) . (A.24)

A.8 Characteristic/moment generating function

To prove the central limit theorem, first we introduce the Fourier transform (or character-
istic function) of a probability distribution. Consider a random vector X with probability
distribution fX (x), that is X ∼ fX . We denote the moment generating function with ψX ,
which is

ψX (t) ≡
∫ ∞
−∞

dkxeit
TxfX (x) = E

[
eit

TX
]
. (A.25)

If we set t = −it̃, then ψX is called the moment generating function. For most prob-
ability distributions, there is no meaningful difference between using t or −it̃ (there could
potentially only be a difference if the distribution had complex poles or branch cuts). Notice
that

E [Xi1 · · ·Xil ] =
1

il
∇ti1
· · · ∇til

ψX (t) . (A.26)

That is, we can obtain the moments of the probability distribution from the characteristic
function (although we need to divide by 1/il).

Perhaps most importantly, notice that since the characteristic function for a probability
distribution is the Fourier transform of the probability density, we can uniquely map a
probability density to its characteristic function and back. That is, given a characteristic
function, we can find the unique probability density that it corresponds to.

Consider a linear affine transformation of the random variableX, which we call Y = aX+b.
We also call y = ax + b. The probability distribution with the volume element remains
unchanged dyfY (x) = dxfX (x). We conclude that

ψY (t) =

∫ ∞
−∞

dkyeit
TyfY (y)

=eit
T b

∫ ∞
−∞

dkxeiat
TxfX (x)

=eit
T bψX (at) . (A.27)
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The characteristic function of a sum of independent variables is the product of the charac-
teristic function for each variable. Define Y =

∑n
i=1Xi, we then have

ψY (t) =

∫ ∞
−∞

dxk1 · · ·
∫ ∞
−∞

dxkne
itT

∑
i xifY (x1, ...,xn)

=
n∏
i=1

∫ ∞
−∞

dxki e
itTxifXi

(xi)

=
n∏
i=1

ψXi
(t) . (A.28)

The second line follows from fY (x1, ...,xn) =
∏

i fXi
(xi), as all the variables are indepen-

dent.

A.9 Central limit theorem

LetX1, ...,Xn be n be independent and identically distributed random vectors (of dimension
k each), and let each variable have mean µ and covariance matrix Σ. The central limit
theorem states that the probability distribution of the average of these variables,

X̄n ≡
1

n

n∑
i=1

Xi, (A.29)

limits to a multivariate normal distribution with mean µ and covariance matrix Σ/n as
n → ∞. Note that we made no assumption about the probability distribution for the Xi,
except that the probability distribution has a finite mean and variance. We can write the
central limit theorem as

lim
n→∞

√
nX̄n ∼ Nk (µ,Σ) , (A.30)

where Nk is the multivariate normal distribution. To prove this, we make use of the charac-
teristic function for Xn, which is

ψXn (t) =
n∏
i=1

ψXi

(
t

n

)
=

(
1 + i

1

n
tTµ+ i2

1

2

1

n2
tTΣt+O

(
1

n3

))n
=exp

[
itTµ+ i2

1

2
tT Σ̃t

](
1 +O

(
1

n3

))
, (A.31)

where Σ̃ = Σ/n. We used the identity

lim
n→∞

(
1 +

a

n

)n
= ea. (A.32)

to leading order, the last line of (A.31) is the characteristic function for Nk

(
µ, Σ̃

)
(see

(B.8)). This concludes the proof.
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A.10 Fisher information and the Bernstein–von Mises

theorem

The Fisher information is the negative expectation of the Hessian of the log likelihood.
In terms of components, we have

Fij (θ) ≡− Eθ [∇θi∇θj lnP (x|θ)]

=−
∫
dnxP (x|θ)∇θi∇θj lnP (x|θ) . (A.33)

Here we view P (x|θ) as the PDF for X, that has dependence on the hyperparamters

θ. For example, we could imagine P = (2πσ)−1/2 exp
[
−1

2
(x− µ)

]
, and that µ, σ as the

hyperparameters of the model. We set the dimensionality of x to be n and the dimensionality
of θ to be k. The Fisher information can also be written as the variance of the score
function. The score function is

si (x;θ) ≡ ∇θi lnP (x;θ) . (A.34)

The expectation of the score function is zero

E [si (x;θ)] =

∫
dnxP (x;θ)∇θi lnP (x;θ)

=∇θi

∫
dnxP (x;θ) = 0. (A.35)

We then have

Fij (θ) =−
∫
dnxP (x;θ)∇θi∇θj lnP (x;θ)

=

∫
dnx

[
1

P (x;θ)
∇θiP (x;θ)∇θjP (x;θ)−∇θi∇θjP (x;θ)

]
=

∫
dnxP (x;θ)∇θi lnP (x;θ)∇θj lnP (x;θ)

=Eθ [sisj]

=Vθ,ij [s (x;θ)] . (A.36)

That is, the Fisher information is the variance of the score.

Let θ̂ be the maximum likelihood estimator for θ. Under appropriate regularity conditions,
the likelihood L (θ) tends towards a multivariate Gaussian function with mean θ̂ and covari-
ance matrix given by the inverse Fisher information divided by the number of measurements
of the data n, F̃−1 = F−1/n. In equations, we have

lim
n→∞

P (θ|x) = lim
n→∞

π (θ)
∏n

i=1 P (xi|θ)

Z (x)
= N

(
θ̂, F̃−1

)
. (A.37)
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This is known as the Bernstein–von Mises theorem (BvM theorem for short). We provide
a rough sketch of how the proof goes. For more details see [Was10]. The log likelihood is

lnL (θ) =
N∑
i=1

lnP (xi|θ) (A.38)

We Taylor series expand the derivative of the log-likelihood to linear order about a point θ0

∇θi lnL (θ) =∇θi lnL (θ)
∣∣
θ=θ0

+∇θi∇θj lnL (θ)
∣∣
θ=θ0

(θ − θ0)j + · · · . (A.39)

Setting θ = θ̂, relabeling θ0 → θ, dropping the “
∣∣
θ=θ0

” to reduce clutter, and rearranging
gives us

√
n
(
θ̂i − θi

)
=−

(
1

n
∇θ∇θ lnL (θ)

)−1

ij

(
1√
n
∇θj lnL (θ)

)
. (A.40)

We used that at the maximum likelihood estimator, θ̂, the derivative of the likelihood is
zero. As n→∞, we see that

lim
n→∞

∇θj lnL (θ) =
1√
n

lim
n→∞

n∑
m=0

∇θj lnP (θ|xm)

→ ∼ Nk (0,F ) . (A.41)

The above result followed from the central limit theorem: the mean of the score is zero, and
the variance of the score is the Fisher information. By the law of large numbers we can
average

lim
n→∞

1

n

(
− (∇θ∇θ lnL (θ))ij

)
= lim

n→∞

1

n

n∑
m=1

(−∇θi∇θj lnP (θ|xm))

→Fij. (A.42)

Thus the variance of the limit is modified to be F−1FF−1 = F−1. We can then conclude
that

lim
n→∞

√
n
(
θ̂ − θ

)
∼ Nk

(
0,F−1

)
. (A.43)

Or in other words

lim
n→∞

√
nθ̂ ∼ Nk

(
θ̂,F−1

)
. (A.44)

We have not been careful by what we mean by “→” and “∼” here–in fact there are different
notions of convergence that go into the full proof (see for example [Was10]).

We can understand the BvM theorem heuristically as follows. As we collect more data, the
posterior probability becomes increasingly “peaked” near the maximum likelihood estimator.
We can then Taylor series about the maximum of the log-likelihood to quadratic order.
Exponentiating the log-likelihood gives us a multivariate normal with the inverse Fisher
information as the covariance matrix.
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A.11 Fisher information and the Cramér-Rao bound

Consider an estimator Θ for model parameters θ. Let Σ is the covariance matrix for the
estimator Θ, let E [Θ] = ψ, and let F be the Fisher information evaluated at ψ. The
Cramér-Rao bound states that

Σij ≥ ∇θmψi∇θnψjF
−1
mn, (A.45)

If Θ is an unbiased estimator (ψ = θ), then (A.45) reduces to

Σij ≥ F−1
ij , (A.46)

If Θ is a biased estimator, then ∇θiψj = δij +∇θibj, where bj is the bias. The Cramér-Rao
bound can be used to interpret the Fisher matrix as an estimate for the lowest error one
could achieve for an unbiased estimator. For biased estimators though, we see that the Fisher
information does not give a lower bound on the elements of the covariance matrix, since it
is possible that the bias could be negative, ∇θibj < 0. That is, biased estimators can have
smaller covariance matrix elements than unbiased estimators. If the error from the bias is
less than the error from the covariance (for example, if one only has a few measurements
of noisy data), a biased estimator can sometimes be superior to an unbiased estimator in
determining θ.

Here we provide the outline of a proof of (A.45). First we prove a generalization of the
Cauchy-Schwartz inequality. Let y and z be random vectors (not necessarily of the same
dimensionality). Then

Vij [z] ≥ Cip [z,y]Vpq [y]−1 Cqj [y, z] . (A.47)

To prove this, we define u ≡ y − µy and v ≡ z − µz, so µu = 0 and µv = 0. For any
matrix A we have the following matrix inequality (we insert the matrix in case v and u have
different dimensionality)

(v +Au) (v +Au)T ≥ 0. (A.48)

Taking the expectation of this and expanding, we have

E
[
vvT

]
+AE

[
uvT

]
+ E

[
vuT

]
AT +AE

[
uuT

]
AT ≥ 0. (A.49)

Set A = −E
[
uvT

]
E
[
uuT

]−1
. The last two terms cancel, and we are left with

E
[
vvT

]
≥ E

[
uvT

]
E
[
uuT

]−1 E
[
uvT

]
. (A.50)

Re-introducing y and z, and using the definition of the covariance (A.19) and variance
(A.20), we have (A.47),

Vij [z] ≥ Cip [y, z]Vpq [y]−1 Cqj [y, z] . (A.51)
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This completes the proof of the generalized Cauchy-Schwartz inequality.

We now prove (A.45). We use (A.47), and set

z = Θ, y = s, (A.52)

where Θ is an estimator for θ, and s is the score (see (A.34)). The covariance between Θ
and s is

Cij [Θ, s] =E
[
(Θi − µΘi

)
(
si − µsj

)]
=E [Θisj]

=

∫
dnxP (x|θ) Θi∇θj lnP (x|θ)

=∇θjE [Θi]

=∇θjψi. (A.53)

We also have

Vij [Θ] = Σij, Vij [s] = Fij. (A.54)

We have defined Σ to be the covariance matrix of Θ, and used that Fisher information is the
variance of the score (see (A.36)), Plugging this all into (A.47), we obtain the Cramér-Rao
bound

Σij

∣∣∣
θ=µΘ

≥ ∇θpψi∇θ1ψjF
−1
pq (θ) . (A.55)
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Appendix B

Common probability distributions

We briefly review some common probability distributions and some of their properties.

B.1 Continuous distributions

B.1.1 Exponential family of distributions

A large number of PDFs fall under the exponential family, so we begin by reviewing this
class of distributions. The PDF of the exponential family of distributions take the form

fX (x;θ) = h (x) g (θ) eη
T (θ)T (x). (B.1)

A large number of PDFs fall under the exponential family. The functional form of h, g,η,T
determine the particular instantiation of the distribution. The vector η is called the natural
parameter of the exponential family. Consider a sequence of N independent and identical
draws (IID) from an expoential family. The likelihood is

L = g (θ)N
(

N∏
i=1

f (xi)

)
exp

[
η (θ)

N∑
i=1

T (xi)

]
. (B.2)

We can view
∏
f (xi) as a normalization factor in the likelihood. We see then that in

effect the likelihood depends only on x through TN ≡
∑

i T (xi). This makes TN a suffi-
cient statistic for the exponential family of distributions. A sufficient (set of) statistic(s)
completey describe the likelihood (or probability distribution).
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B.1.2 Uniform distribution

The uniform distribution finds widespread use mostly because it is simple to manipulate and
simple in understand. The uniform distribution is also commonly used as a “non-informative
prior” (see Chpt. 1).

The uniform distribution over the interval (a, b) is denoted by U (a, b). We write X ∼ U (a, b).
The PDF is

fX (x; a, b) =

{
a < x < b 1

b−a
otherwise 0

. (B.3)

The characteristic function is

ψX (t) =

∫ ∞
−∞

dxeixtfX (x)

=
1

b− a

∫ b

a

dxeixt

=
1

b− a
eibt − eiat

it
. (B.4)

The mean and variance are

µ = E [x] =
b+ a

2
, (B.5)

σ2 = E
[
(x− µ)2] =

(b− a)2

12
. (B.6)

From the mean and variance, we can determine a, b, and hence U (a, b). We see that µ, σ2

form a sufficient set of statistics.

B.1.3 Multivariate normal distribution

Many observed quantities in nature are approximately distrbuted according to the normal
(or Gaussian) distribution. That the normal distribution appears so commonly in practice
can be at least partially explained in part by the central limit theorem (see Appendix. A):
the normal distribution is the limiting distribution of the mean of a large number of random
variables drawn from any distribution with a finite mean and variance. This being said,
there are plenty of cases where this does not happen, that is one may not be drawing from
a random variable that is effectively the average of many of random variables of finite mean
and variance. So while the normal distribution is commonly found in practice, it is certainly
not the only probability distribution one encounters in practice.

The multivariate normal distribution in Rk with mean µ and covariance matrix Σ is denoted
by Nk (µ,Σ). The PDF is

fX (x;µ,Σ) = (2π det Σ)−1/2 exp

[
−1

2
(x− µ)T Σ−1 (x− µ)

]
. (B.7)
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The characteristic function for the multivariate normal distribution plays an important role
in the proof of the central limit theorem that we review in Appendix A. The characteristic
function is

ψX (t) =

∫ ∞
−∞

dkxeit
TxfX (x)

=

∫ ∞
−∞

dkx
1√

2π| det Σ|
exp

[
itTx− 1

2
(x− µ)T Σ−1 (x− µ)

]
=exp

[
itTµ+ i2

1

2
tTΣt

]
×
∫ ∞
−∞

dkx
1√

2π| det Σ|
exp

[
−1

2
(x− iΣt− µ)T Σ−1 (x− iΣt− µ)

]
=exp

[
itTµ+ i2

1

2
tTΣt

]
. (B.8)

The mean and covariance matrix are just µ and Σ,

µ = E [x] = µ, (B.9)

Σ = E
[
(x− µ)T (x− µ)

]
= Σ. (B.10)

Clearly µ, σ2 form a sufficient set of statistics for the normal distribution.

B.1.4 Chi-square distribution

The chi-square distribution describes the distribution of the sum of the normalized, squared
deviates from the mean of draws from the normal distribution. The chi-square distribution
can be used to diagnose how well a given data set is approximated by the normal distribution
with a given mean and variance.

Let X1, ..., XN be independent samples drawn from N (µ, σ). We define the random variable

QN ≡
N∑
i=1

(Xi − µ)2

σ2
. (B.11)

The variable QN is then distributed according to the chi-square distribution with N degrees
of freedom, QN ∼ χ2

N . Understanding how the chi-squared PDF is derived is somewhat
interesting, so we outline the details of the derivation here. To find the PDF for QN , fQN

,
we first convert to the normalized variables

Zi =
Xi − µ
σ

. (B.12)

The constraint (B.11) then is

QN =
N∑
i=1

Z2
i . (B.13)
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We could apply the change of variables formula (A.14) to find fQN
. It is slightly easier to

start from the observation that we want

fQN
dQN =

N∏
i=1

fZi
dZi, (B.14)

subject to the constraint (B.13). We then convert to spherical polar coordinates. We set
the radius R2 = QN , and then a set of N − 1 angular coordinates θj In spherical polar
coordinates, the constraint (B.13) is particular simple: it just constrains the radius to a
constant value R =

√
QN . The differential volume dZ1 · · · dZN then reduces to the area of

the (N − 1)-sphere at radius R, SN−1 (R), multiplied by dR Then (B.14) reduces to

fQN
dQN =SN−1 (R) dR

N∏
i

fZi
. (B.15)

We have dR = dQN/(2Q
1/2
N ) and

N∏
i

fZi
= (2π)−N/2 exp

(
−1

2

N∑
i=1

Z2
i

)

= (2π)−N/2 exp

(
−1

2
QN

)
. (B.16)

Finally we note that

SN−1 (R) =
2RN−1πN/2

Γ (N/2)
, (B.17)

where Γ is the Gamma function. We conclude that the chi-square distribution with N degrees
of freedom is

fQN
(qN) =

1

2N/2Γ (N/2)
q
N/2−1
N e−qN/2. (B.18)

Remember this is the distribution for the squared normalized deviates from the mean, (B.11),
and that we are restricting qN to the positive real line. Notice that for N > 2, (B.18) is not
peaked at qN = 0.

More quantitatively, the mean and variance of the chi-squared distribution are

µ = E [qN ] =N, (B.19)

σ2 = V
[
(qN − µ)2] =2N. (B.20)

Notice that the mean grows as N increases.
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B.1.5 Student’s t-distribution

The chi-square distribution describes the distribution of (B.11), that is the sum of the
normalized square deviates from the sample mean. We now consider the problem of inferring
the posterior probability for the mean and variance of normal distribution, given data D =
{x1, ..., xN}. Notice that in (B.11) we assumed that the random variables Xi were drawn
from N (µ, σ2), as we assumed that we knew µ and σ2. We assume that we do not care
about the variance.

P (µ|D) =

∫
dσP (µ, σ|D)

=

∫
dσ
P (D|µ, σ)P (µ, σ)

P (D)
. (B.21)

B.1.6 Beta distribution

B.2 Discrete distributions

B.2.1 Bernoulli distribution

We assign the value X = 1 with probability p and X = 0 with probability 1 − p. The
distribution of this probability space is the Bernoulli distribution. The mean and covariance
are

µ =E [x] = p, (B.22)

σ2 =E
[
(x− µ)2] = p (1− p) . (B.23)

One draw from a Bernoulli distribution is called a Bernoulli trial.

B.2.2 Binomial distribution

A Bernoulli process is a sequence of independent, identically distributed Bernoulli trials
{Xi}. is the Binomial distribution describes the distribution of the following variable.

Xn ≡
n∑
i=1

Xi. (B.24)

Notice that this is not the mean of the Bernoulli trials.

The PDF of the binomial distribution is

fX (x; p, n) =
n!

x! (n− x)!
px (1− p)n−x . (B.25)
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The mean and variance are

µ =E [x] = np, (B.26)

σ2 =E
[
(x− µ)2] = np (1− p) . (B.27)

Notice that the mean and variance grow unbounded as we increase n.

B.2.3 Poisson distribution

The Poisson distribution often occurs in situations where one is counting up the number of
occurances of a very rare event.

The PDF of the Poisson distribution is

fX (x;λ) =
e−λλx

x!
. (B.28)

We can see why they Poisson PDE describes the number of occurances of a very rare event
by taking such a limit of the Binomial PDF. We take (B.25), and take the limit p→ 0 and
n→∞ such that the combination np = λ is finite. We set x to be a constant value, so that
n� x. We then have

n!

x! (n− x)!
px (1− p)n−x =

n!

x! (n− x)!

(
λ

n

)x(
1− λ

n

)n−x
=

n!

x! (n− x)!

(
λ/n

1− λ/n

)x(
1− λ

n

)n
→ 1

x!

(
λ

n

)x
e−λ. (B.29)

If we took the formal limit n → ∞, this would reduce to zero. So instead, we do not take
that exact limit.

The mean and variance of the Poisson distribution are

µ =E [x] = λ, (B.30)

σ2 =E
[
(x− µ)2] = λ. (B.31)

B.2.4 Geometric distribution

The PDF of the geometric distribution is

fX (x; p) = (1− p)x−1 p. (B.32)
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It holds for x = {1, 2, ...}. The geometric distribution can be “derived” from the following.
Say you have a Bernoulli process, and you want to know the probability of measuring the
first value of X = 1 at step n. The probability of measuring X = 1 after a sequence of n− 1
X = 0 is

P (Xn = 1, Xn−1 = 0, ...., X1) = (1− p)n−1 p. (B.33)

Deriving the mean and variance of the geometric distribution requires some tricks. Here we
show a method that is fairly generic, and that can be used to derive the moments of many
other distributions, e.g. the Gaussian distribution. We write the mean as

E [X] =
∞∑
x=1

x (1− p)x−1 p

=
p

1− p

∞∑
x=1

x (1− p)x

=
p

1− p
1

ln (1− p)
d

dα

∞∑
x=1

(1− p)αx
∣∣∣
α=1

=
p

1− p
1

ln (1− p)
d

dα

1

1− (1− p)α
∣∣∣
α=1

=
1

p
. (B.34)

We used the fact that dqα/dα = ln q × qα. The variance can be derived using a similar sort
of argument. We have

µ = E [x] =
1

p
, (B.35)

σ2 = E
[
(x− µ)2] =

1− p
p2

. (B.36)

Notice that both the mean and variance grow unbounded as p→ 0.
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Appendix C

Common special functions

We briefly review the properties of some special functions that we use in the text.

C.1 Exponential

The exponential function is ex. The Taylor series expansion of the exponential function
about x = 0 is

ex =
∞∑
n=0

1

n!
xn, (C.1)

this series has an infinite radius of convergence. Another useful formula is

ex = lim
n→∞

(
1− x

n

)n
. (C.2)

C.2 Gamma

The gamma function is Γ (x). It is a continuous generalization of the factorial function x!.
The most common definitionof Γ is

Γ (x) =

∫ ∞
0

dt e−t tx−1. (C.3)

The Gamma function satisfies

Γ (x) = (x− 1) Γ (x− 1) . (C.4)
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We see that Γ (1) = 1, and that Γ (−n) =∞ for all n = 0, 1, 2, 3, .... Notice that heuristically
this “had” to be so, as from (C.4)

Γ (1) = (1− 1) Γ (0) = 1. (C.5)

For this to hold, we “need” Γ (0) =∞.
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Appendix D

Fourier and other transforms

D.1 Brief review of complex analysis

For a function A (t) that is singular at infinity, the Cauchy principal value is defined to
be

p.v.

∫ ∞
−∞

dtA (t) = lim
T→∞

∫ T

−T
dtA (t) . (D.1)

For complex-valued functions A (z) that are singular at a point z0, the Cachy principal value
is defined to be the limit of the deformation of the integral C by a disk of radius ε centered
around z0

p.v.

∫
C

dzA (z) = lim
ε→0+

∫
C(ε)

dzA (z) . (D.2)

This can also be written as

p.v.

∫
C

dzA (z) = lim
ε→0+

(∫ z0−ε

−∞
dzA (z) +

∫ ∞
z0+ε

dzA (z)

)
. (D.3)

D.2 The Fourier transform

We briefly review Fourier transforms, along with a helpful transforms that are used in signal
processing.

The one-dimensional Fourier transform and its inverse are

A (t) = F−1
[
Ã (f)

]
(t) =

∫ ∞
−∞

dfe2πiftÃ (f) , (D.4a)
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Ã (f) = F [A (t)] (f) =

∫ ∞
−∞

dfe−2πiftA (t) . (D.4b)

The Fourier representation of the Dirac delta function δ (t) is

δ̃ (f) =

∫ ∞
−∞

dfe−2πiftδ (t) = 1. (D.5)

The convolution of two functions A(t) and B(t) are

(A ∗B) (t) ≡
∫ ∞
−∞

dτA (τ)B (t− τ) =

∫ ∞
−∞

dτA (t− τ)B (τ) . (D.6)

The Fourier transform of the convlution is

F [(A ∗B) (t)] (f) =

∫ ∞
−∞

dτ

∫ ∞
−∞

df

∫ ∞
−∞

df ′e2πifτe2πif ′(t−τ)Ã (f) B̃ (f ′)

=

∫ ∞
−∞

dfe2πiftÃ (f) B̃ (f) . (D.7)

That is, convolution in real space is multiplication in frequency space.

D.3 The Laplace transform

The Laplace transform of a function A(t) is

A (t) = L−1 [A (λ)] (t) =
1

2πi
lim
T→∞

∫ γ+iT

γ−iT
dλeλtÃ (λ) , (D.8a)

Ã (t) = L [A (t)] (λ) =

∫ ∞
0

dte−λtA (t) , (D.8b)

Here γ is a real number so that the contour path of integration is in the region of convergence
of Ã (λ). In effect, the inverse Laplace transform is like the inverse Fourier transform.

D.4 The Hilbert transform

The Hilbert transform of a function A (t) is

A (t) = H−1
[
Ã (τ)

]
(t) = − 1

π
p.v.

∫ ∞
−∞

dτ
Ã (τ)

t− τ
, (D.9a)

Ã (τ) = H [A (t)] (τ) =
1

π
p.v.

∫ ∞
−∞

dt
A (t)

τ − t
. (D.9b)
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Appendix E

Stationary phase approximation

E.1 Stationary phase approximation

Here we review the stationary phase approximation for the Fourier transform. For more
discussion see [BO99]. Consider a complex function, which we write as

B (t) = A (t) eiφ(t). (E.1)

The Fourier transform is

B̃ (f) =

∫ ∞
−∞

dtA (t) eiφ(t)−2πift. (E.2)

We imagine A (t) is a slowly varying function, while φ (t) is rapidly varying. We then expect
that the integral for B̃ (f) will be dominated by the stationary points of φ (t) − 2πft, that
is the points where

dφ

dt
− 2πf = 0. (E.3)

This can be more formally justified by the Riemann-Lebesgue lemma, which states that

lim
x→∞

∫ b

a

dteixtA (t) = 0, (E.4)

provided
∫ b
a
dtA (t) exists. We can extend a, b → ±∞ so long as A (t) is integrable. Going

back to (E.2), we assume that φ (t) − 2πft has one stationary point for each value of f ,
which we call t0 (f). That is, t0 (f) is defined to solve the stationary phase equation

dφ

dt

∣∣∣
t=t0
− 2πf = 0. (E.5)
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We Taylor series expand about the stationary point to quadratic order in φ,

φ (t)− 2πft = φ (t0)− 2πft0 +
1

2

d2φ

dt2

∣∣∣
t=t0

(t− t0)2 +O
[
(t− t0)3] , (E.6)

insert this into (E.2), and obtain

B̃ (f) ≈A (t0) eiφ(t0)−2πift0

∫ ∞
−∞

dt exp

[
i
1

2

d2φ

dt2

∣∣∣
t=t0

(t− t0)2

]
=

[
1

2

d2φ

dt2

∣∣∣
t=t0

]−1/2

A (t0) eiφ(t0)−2πift0+iπ/4

∫ ∞
−∞

dxe−x
2

=

[
1

2π

d2φ

dt2

∣∣∣
t=t0

]−1/2

A (t0) eiφ(t0)−2πift0+iπ/4. (E.7)

Using the chain rule, we can write φ (t0) and t0 as integral equations in terms of the frequency.
We have

t0 (f) =

∫ f

df ′
dt

df
, (E.8a)

φ (t0) =2π

∫ f

df ′
dt

df
f ′. (E.8b)

Defining ḟ ≡ df/dt, we see that we can write the phase of B̃ (f) as

Ψ ≡φ (t0)− 2πft0 +
π

4

=2π

∫ f

df ′
1

ḟ
(f ′ − f) +

π

4
. (E.9)
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